Skip to main content
Log in

Electrical and optical properties of InGaN/GaN MQWs light-emitting diodes with Ni/Au/ITO transparent p-contacts

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present study, optical and electrical properties of e-beam deposited Ni/Au/ITO (1.5/1/50 nm) contacts on p-GaN are investigated and compared with conventional thin Ni/Au (5/5 nm) semitransparent p-contacts. The contacts were annealed at 560 °C for 5 min in N2 + O2 ambient in a rapid thermal annealing system. The current–voltage (I–V) characteristics of both metal schemes showed linear behavior. The specific contact resistances and sheet resistances extracted from measured resistance versus contact pads spacing of Ni/Au and Ni/Au/ITO contacts were recorded ~ 2.71 × 10−3 Ω-cm2, 4.94 × 10−4 Ω-cm2, 2.021 × 105 Ω/□ and 2.1898 × 105 Ω/□, respectively. The normalized transmittance of Ni/Au/ITO film was recorded 81.6% at 463 nm, which was 8.5% higher than the conventional Ni/Au film (73.1%). Scanning electron microscopy images of contacts showed that the adhesion quality of Ni/Au/ITO contacts was superior to annealed Ni/Au contacts. It was found that electroluminescence intensity was higher (7.5%) for LED chip with Ni/Au/ITO p-contacts than LED chip with Ni/Au contacts. The forward voltages (VF) of LEDs with Ni/Au and Ni/Au/ITO contacts at 20 mA current injection were found 2.8 V and 2.91 V, respectively. These results indicate that Ni/Au/ITO may be used as transparent p-contacts for fabrication of high-performance GaN LEDs due to their better optical and adhesive properties compared to the conventional Ni/Au (5/5 nm) contacts on p-GaN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C M Lee, C C Chuo, I L Chen, J C Chang and J I Chyi IEEE Electron. Dev. Lett.24 156 (2003)

    Article  ADS  Google Scholar 

  2. W S Wong, T Sands, N W Cheung, M Kneissl, D P Bour, P Mei, L T Romano and N M Johnson Appl. Phys. Lett. 77 2822 (2000)

    Google Scholar 

  3. Y C Lin, S J Chang, Y K Su, T Y Tsai, C S Chang, S C Shei, S J Hsu, C H Liu, U H Liaw, S C Chen and B R Huang IEEE Photonics Technol. Lett.14 1668 (2002)

    Article  ADS  Google Scholar 

  4. Y C Lin, S J Chang, Y K Su, T Y Tsai, C S Chang, S C Shei, C W Kuo and S C Chen Solid-State Electron.47 849 (2003)

    Article  ADS  Google Scholar 

  5. R-H Horng, D-S Wuu, Y-C Lien and W-H Lan Appl. Phys. Lett.79 2925 (2001)

    Article  ADS  Google Scholar 

  6. C-S Chang, S-J Chang, Y-K Su, Y-Z Chiou, Y-C Lin, Y-P Hsu, S-C Shei, H-M Lo, J-C Ke, S-C Chen and C-H Liu Jpn. J. Appl. Phys.42 3324 (2003)

    Article  ADS  Google Scholar 

  7. S Zhou, S Yuan, Y Liu, L J Guo, S Liu and H Ding Appl. Surf. Sci.355 1013 (2015)

    Article  ADS  Google Scholar 

  8. C H Lin, D L Hibbard, A Au, H P Lee, Z J Dong, F J Szalkowski, J Chen and C Chen Mater. Res. Soc. Symp.639 G4.8.1 (2001)

    Google Scholar 

  9. K-M Chang, J-Y Chu and C-C Cheng IEEE Photonics Technol. Lett.16(8) 1807 (2004)

    Article  ADS  Google Scholar 

  10. S-H Su, C-C Hou, M Yokoyama, S-M Chen Solid-State Electron.49 1905 (2005)

    Article  ADS  Google Scholar 

  11. J-O Song, K-K Kim, H Kim, Y-K Kim, H-G Hong, H Na and T-Y Seong Mater. Sci. Semicond. Process.10 211(2007)

    Article  Google Scholar 

  12. S-P Jung, C-H Lin, H M Chan, Z Fan, J G Lu, H P Lee Phys. Stat. Solidi. (a)201 2827 (2004)

    Article  ADS  Google Scholar 

  13. J K Sheu, Y K Su, G C Chi, P L Koh, M J Jou, C M Chang, C C Liu, and W C Hung Appl. Phys. Lett.74 2340 (1999)

    Article  ADS  Google Scholar 

  14. C Gui, X Ding, S Zhou, Y Gao, X Liu and S Liu Opt. Laser Technol.104 112 (2018)

    Article  ADS  Google Scholar 

  15. W Hou, C Stark, S You, L Zhao, T Detchprohm and C Wetzel Appl. Opt.51(23) 5596 (2012)

    Article  ADS  Google Scholar 

  16. J Y Moon, J H Kim, H S Lee, C H Ahn, H K Cho, J Y Lee and H S Kim J Korean Phys. Soc.53 3681 (2008)

    Article  ADS  Google Scholar 

  17. T W Kang, C S Chi, S Park and T W Kim Jpn. J. Appl. Phys.39 1062 (2000)

    Article  ADS  Google Scholar 

  18. L-C Chen, J-K Ho, F-R Chen, J-J Kai, L Chang, C-S Jong, C C. Chiu, C-N Huang and K-K Shih Phys. Stat. Sol. (a)176 773 (1999)

    Article  ADS  Google Scholar 

  19. J S Kwak and Y Park J Korean Phys Soc45 988 (2004)

    Google Scholar 

  20. S Y Kim, H W Jang and J-Lam Lee Phys. Stat. Sol. (c)1 214 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, under network programme (PSC-0102). Authors are thankful to members of Optoelectronics and MOEMS Group for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldip Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Chauhan, A., Mathew, M. et al. Electrical and optical properties of InGaN/GaN MQWs light-emitting diodes with Ni/Au/ITO transparent p-contacts. Indian J Phys 94, 183–187 (2020). https://doi.org/10.1007/s12648-019-01472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01472-0

Keywords

PACS Nos

Navigation