Skip to main content
Log in

Electron impact excitation of krypton from the metastable state to the \(4p^{5}5p\) levels

  • OriginalPaper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the fully relativistic distorted-wave method, we calculated electron impact excitation cross sections out of the two metastable levels of \(4p^{5}\)5sJ = 0 and J = 2 into the ten levels of the \(4p^{5}\)5p configuration of krypton. To obtain accurate results, careful consideration is given to the generation of the target state wave functions through the systematic inclusion of electron correlations. We find that the electron correlation has a large influence on the cross sections. This effect weakens as the incident electron energy increases. Our numerical results are compared with the available experimental data and other theoretical values over the measured energy range, showing a good quantitative agreement. We believe that these accurate results will be useful in plasma modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Namba et al. Phys. Rev. A 84 053202 (2011)

    Article  ADS  Google Scholar 

  2. Y H Chiu et al. J. Appl. Phys. 99 113304 (2006)

    Article  ADS  Google Scholar 

  3. G F Karabadzhak et al. J. Appl. Phys. 99 113305 (2006)

    Article  ADS  Google Scholar 

  4. S Trajmar et al. Phys. Rev. A 23 2167 (1981)

    Article  ADS  Google Scholar 

  5. S Tsurubuchi, H Kobayashi, and M Hyodo J. Phys. B 36 2629 (2003)

    Article  ADS  Google Scholar 

  6. J E Chilton, M D Stewart Jr, and C C Lin Phys. Rev. A 62 032714 (2000)

    Article  ADS  Google Scholar 

  7. R O Jung, T E Stone, J B Boffard, L W Anderson, and C C Lin Phys. Rev. Lett. 94 163202 (2005)

    Article  ADS  Google Scholar 

  8. J B Boffard, T E Stone, L W Anderson, and C C Lin Bull. Am. Phys. Soc. 46 9 (2001)

    Google Scholar 

  9. S Kaur, R Srivastava, R P McEachran, and A D Stauffer J. Phys. B 31 4833 (1998)

    Article  ADS  Google Scholar 

  10. R O Jung, Tom E Stone, John B Boffard, L W Anderson, and C C Lin Phys. Rev. A 73 022722 (2006)

    Article  ADS  Google Scholar 

  11. A Kramida, Yu Ralchenko, J Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [2018, April 9]. National Institute of Standards and Technology, Gaithersburg, MD (2018)

  12. S Kastner, C Wade, T S Smith, and M Blaha J. Phys. B 8 684 (1975)

    Article  ADS  Google Scholar 

  13. Y K Kim Phys. Rev. A 65 022705 (2002)

    Article  ADS  Google Scholar 

  14. Z B Chen Eur. Phys. J. D 72 67 (2018)

    Article  ADS  Google Scholar 

  15. Z B Chen and C Z Dong Eur. Phys. J. D 72 101 (2018)

    Article  ADS  Google Scholar 

  16. Z B Chen, C Z Dong, L Y Xie, and J Jiang. Chin. Phys. Lett. 31 033401 (2014)

    Article  ADS  Google Scholar 

  17. G F Du, J Jiang, and C Z Dong Eur. Phys. J. D 63 103 (2011)

    Article  ADS  Google Scholar 

  18. C J Bostock, D V Fursa, I Bray, K Bartschat Phys. Rev. A 90 012707 (2014)

    Article  ADS  Google Scholar 

  19. C J Bostock, D V Fursa, and I Bray Phys. Rev. A 89 062710 (2014)

    Article  ADS  Google Scholar 

  20. A Dasgupta, K Bartschat, D Vaid, A N Grum-Grzhimailo, D H Madison, M Blaha, and J L Giuliani Phys. Rev. A 65 042724 (2002)

    Article  ADS  Google Scholar 

  21. X Guo et al. J. Phys. B 33 1921 (2000)

    Article  ADS  Google Scholar 

  22. J Zeng, J Wu, F Jin, G Zhao, and J Yuan Phys. Rev. A 72 042707 (2005)

    Article  ADS  Google Scholar 

  23. R K Gangwar, L Sharma, R Srivastava, and A D Stauffer Phys. Rev. A 82 032710 (2010)

    Article  ADS  Google Scholar 

  24. J Jiang, C Z Dong, L Y Xie, and X X Zhou J.Phys. B 41 245204 (2008)

    Article  ADS  Google Scholar 

  25. F A Parpia, C F Fischer, and I P Grant Comput. Phys. Commun. 94 249 (1996)

    Article  ADS  Google Scholar 

  26. Z B Chen X L Guo, and K Wang J. Quant. Spectrosc. Radiat. Transf. 206 213 (2018)

    Google Scholar 

  27. Z B Chen Phys. Plasmas 24 122119 (2017)

    Article  ADS  Google Scholar 

  28. Z B Chen, H W Hu, K Ma, X B Liu, X L Guo, S Li, B H Zhu, L Huang, and K Wang Phys. Plasmas 25 032108 (2018)

    Article  ADS  Google Scholar 

  29. S Fritzsche, H Aksela, C Z Dong, S Heinäsmäki, and J E Sienkiewicz Nucl. Instr. Methods B 205 93 (2003)

    Article  ADS  Google Scholar 

  30. H L Zhang and D H Sampson Phys. Rev. A 41 198 (1990)

    Article  ADS  Google Scholar 

  31. R Srivastava, A D Stauffer and L Sharma Phys. Rev. A 74 012715 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor C Z Dong for his kind help. The support of the National Natural Science Foundation of China (Grant No. 11504421) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z B Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z.B. Electron impact excitation of krypton from the metastable state to the \(4p^{5}5p\) levels. Indian J Phys 93, 1391–1397 (2019). https://doi.org/10.1007/s12648-019-01412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01412-y

Keywords

PACS No.

Navigation