Skip to main content
Log in

Observational constraints on EoS parameters of various modified Chaplygin gas models

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cosmological models of a class of modified Chaplygin gas as a candidate of unified dark matter and energy are studied to determine observational constraints on its EoS parameters using the background data. These data consist of \(H(z)-z\) (OHD) data, baryonic acoustic oscillations peak parameter data, CMB shift parameter and SN Ia (Union 2.1) data. Best-fit value of present Hubble parameter (\(H_{0}\)), present matter density (\(\Omega _{m0}\)) and present age of the Universe (\(t_{0}\)) has been determined in all these models. The acceptable range of values of the EoS parameters is determined in the analysis. Variations of EoS parameter (\(\omega\)), squared sound speed (\(c^2_{s}\)) and deceleration parameter (q) with redshift are also studied here. Akaike information criteria and Bayesian information criterion are used to check the suitability of the models. Density perturbation and CMB temperature anisotropy have also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S Perlmutter et al. Nature 391 51 (1998)

    Article  ADS  Google Scholar 

  2. S Perlmutter et al. Astrophys. J. 517 565(1999)

    Article  ADS  Google Scholar 

  3. A G Riess et al. Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  4. A G Riess et al. Astron. J. 607 665 (2004)

    Article  Google Scholar 

  5. J L Tonry et al. Astrophys. J. 594 1 (2003)

    Article  ADS  Google Scholar 

  6. S Bridle, O Lahav, J P Ostriker and P J Steinhardt Science 299 1532 (2003)

    Article  ADS  Google Scholar 

  7. C L Bennett et al. Astrophys. J. Suppl. 148 1 (2003)

    Article  ADS  Google Scholar 

  8. G Hinshaw et al. Astrophys. J. Suppl. 148 135 (2003)

    Article  ADS  Google Scholar 

  9. D N Spergel et al. Astrophys. J. Suppl. 148 175 (2003)

    Article  ADS  Google Scholar 

  10. J F Navarro, C S Frenk and S D M White Astrophys. J. 462 563 (1996)

    Article  ADS  Google Scholar 

  11. A Burkert Astrophys. J. 447 L25 (1995)

    Article  ADS  Google Scholar 

  12. G Kauffmann, S D M White and B Guiderdoni Mon. Not. R. Astron. Soc. 264 201 (1993)

    Article  ADS  Google Scholar 

  13. A Klypin, A V Kravtsov and O Valenzuela Astrophys. J. 522 82 (1999)

    Article  ADS  Google Scholar 

  14. M Kamionkowski and A R Liddle Phys. Rev. Lett. 84 4525 (2000)

    Article  ADS  Google Scholar 

  15. A Kamenshchik, U Moschella and V Pasquier Phys. Lett. B 511 265 (2001)

    Article  ADS  Google Scholar 

  16. S Chaplygin Sci. Mem. Moscow Univ. Math. Phys. 21 1 (1904)

    Google Scholar 

  17. Z H Zhu Astron. Astrophys. 423 421 (2004)

    Article  ADS  Google Scholar 

  18. M C Bento, O Bertolami and A A Sen Phys. Lett. B 575 172 (2003)

    Article  ADS  Google Scholar 

  19. N Bilic, G B Tupper and R D Viollier Phys. Lett. B 535 17 (2001)

    Article  ADS  Google Scholar 

  20. M C Bento, O Bertolami and A A Sen Phys. Rev. D 66 043507 (2002)

    Article  ADS  Google Scholar 

  21. J C Fabris, P L C de Oliveira and H E S Velten Eur. Phys. J. C 71 1773 (2011)

    Article  ADS  Google Scholar 

  22. L Amendola, F Finelli, C Burigana and D Caruran JCAP 0307 005 (2003)

    Article  ADS  Google Scholar 

  23. U Debnath, A Banerjee and S Chakraborty Class. Quant. Grav. 21 5609 (2004)

    Article  ADS  Google Scholar 

  24. Y Wu, S Li, J Lu and X Yang Mod. Phys. Lett. A 22 783 (2007)

    Article  ADS  Google Scholar 

  25. M L Bedran,V Soares and M E Araujo Phys. Lett. B 659 462 (2008)

    Article  ADS  Google Scholar 

  26. S Costa, M Ujevic and A F dos Santos Gen Rel. Grav 40 1683 (2008)

    Article  ADS  Google Scholar 

  27. U Debnath and S Chakraborty Int. J. Theor. Phys. 47 2663 (2008)

    Article  Google Scholar 

  28. S Mukherjee, B C Paul, N K Dadhich, S D Maharaj and A Beesham Class. Quant. Grav. 23 6927 (2006)

    Article  ADS  Google Scholar 

  29. B Pourhassan and E O Kahya Advances in High Energy Physics 231452 2014 (2014)

    Google Scholar 

  30. E O Kahya and B Pourhassan Modern Physics Letters A Vol 30 1550070 13 (2015)

    Google Scholar 

  31. J Sadeghi, H Farahni and B Pourhassan Eur. Phys. J. Plus 84 130 (2015)

    Google Scholar 

  32. B Pourhassan Can. J. Phys. 94 659-670 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. E O Kahya, M Khurshudyan and B Pourhassan Eur. Phys. J. C 43 75 (2015)

    Google Scholar 

  34. B Pourhassan Physics of the Dark Universe 13 132-138 (2016)

    Article  ADS  Google Scholar 

  35. Z Li, W Puxun and Y Hongwei, Astrophy. J. 744 176 (2012)

    Article  ADS  Google Scholar 

  36. L Xu, Y Wang and H Noh Eur. Phys. J. C 72 1931 (2012)

    Article  ADS  Google Scholar 

  37. J C Fabris, O Ogouyandjou, J Tossa and H E S Velten Phy. Letter B 694 289 (2011)

    Article  ADS  Google Scholar 

  38. C-G Park and B Ratra arXiv:1801.00213v1

  39. N Suzuki et al. Astrophys. J. 746 85 (2012)

    Article  ADS  Google Scholar 

  40. J Simon et al. Phys.Rev. D 71 123001 (2005)

    Article  ADS  Google Scholar 

  41. D Stern et al. J. Cosmol. Astropart. Phys. 1002 008 (2010)

    Article  ADS  Google Scholar 

  42. M Moresco et al. J. Cosmol. Astropart. Phys. 8 6 (2012)

    Article  ADS  Google Scholar 

  43. C Zhang et al. Res. Astron. Astrophys. 14 1221 (2014)

    Article  ADS  Google Scholar 

  44. M Moresco Mon. Not. R. Astron. Soc. 450 L16 (2015)

    Article  ADS  Google Scholar 

  45. M Moresco et al. JCAP 1605 014 (2016)

    Article  ADS  Google Scholar 

  46. A L Ratsimbazafy et al. MNRAS 467 3239 (2017)

    Article  ADS  Google Scholar 

  47. D J Eisenstein et al. Astrophy. J. 633 560 (2005)

    Article  ADS  Google Scholar 

  48. G Hinshaw et al. WMAP collaboration Astrophys. J. Suppl. 208 19 (2013)

    Article  ADS  Google Scholar 

  49. C Blake et al. Mon. Not. R. Astron. Soc. 418 (3) 1707 (2011)

    Article  ADS  Google Scholar 

  50. C-H Chuang et al. Mon. Not. R. Astron. Soc. 433 (4) 3559 (2013)

    Article  ADS  Google Scholar 

  51. J R Bond, G Efstathiou and M Tegmark Mon. Not. R. Astron. Soc. 291 L33 (1997)

    ADS  Google Scholar 

  52. A Melchiorri, L Mersini, C J Odman and M Trodden Phys. Rev. D 68 043509 (2003)

    Article  ADS  Google Scholar 

  53. C J Odman, A Melchiorri, M P Hobson and A N Lasenby Phys. Rev. D 67 083511 (2003)

    Article  ADS  Google Scholar 

  54. E Komatsu et al. Astrophys. J. Suppl. 192 18 (2011)

    Article  ADS  Google Scholar 

  55. C L Bennett et al. Astronomical J. Suppl. 208 02 (2013)

    Article  Google Scholar 

  56. A Dev et al. Phys. Rev. D 67 023515 (2003)

    Article  ADS  Google Scholar 

  57. K Shi, Y F Huang and T Lu Mon. Not. Roy. Astron. Soc. 426 2452 (2012)

    Article  ADS  Google Scholar 

  58. G Schwarz Ann. Stat. 6 461 (1978)

  59. L Wang and P J Steinhardt Astrophys. J 508 483 (1998)

    Article  ADS  Google Scholar 

  60. G Chen and B Ratra arXiv:1105.5206

  61. P A R Ade et al. Planck Collaboration Astron. Astrophys. 594 A13 (2016)

    Article  Google Scholar 

  62. Y Chen et al. Astrophys. J 835 86 (2017)

    Article  ADS  Google Scholar 

  63. V V Lukovic et al. Astron. Astrophys. 595 A109 (2016)

    Article  Google Scholar 

  64. Y Chen et al. Astrophys. J 856 3 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the IUCAA Reference Centre at North Bengal University for extending necessary research facilities to initiate the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P. Observational constraints on EoS parameters of various modified Chaplygin gas models. Indian J Phys 93, 1219–1232 (2019). https://doi.org/10.1007/s12648-019-01381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01381-2

Keywords

PACS Nos.

Navigation