Skip to main content
Log in

The ground-state lifetime of polaron in a two-dimensional quantum pseudodot system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the ground-state lifetime (GSL) of polaron in a two-dimensional RbCl quantum pseudodot (QPD) system by using a variational method of Pekar type (PTVM) and the quantum statistical theory. Considering the polaron effect, we derive the dependent relations of the temperature, the electric field, the chemical potential (CP) of the two-dimensional electron gas (TDEG), the polaron radius (PR) and the zero point (ZP) of the pseudoharmonic potential (PHP) on the GSL of polaron. The calculated results show that the GSL \(\tau\) of polaron will decrease when the CP \(V_{0}\) of the TDEG, the electric field and the PR \(R_{p}\) increase, but will increase while the ZP \(r_{0}\) of the PHP, the ground-state energy (GSE) and the temperature parameter \(\gamma\) become larger, respectively. That means that by changing the electric field, the temperature, the PR, the CP of the TDEG and the ZP of the PHP, one can adjust the GSL of polaron, which may offer new insight into studying many related applications in quantum computation (QC) and control of electron transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J H Reina, L Quiroga and N F Johnson Phys. Rev. A 62 012305 (2012)

    Article  ADS  Google Scholar 

  2. A Persano, G Leo, L Manna and A Cola J. Appl. Phys. 104 074306 (2008)

    Article  ADS  Google Scholar 

  3. B S Kandemir J. Phys. Condens. Matter. 17 667 (2005)

    Article  ADS  Google Scholar 

  4. M Tiotsop, A J Fotue, G K Fautso, S C Kenfack and E Mainimo et al Chins. J. Phys. 54 795 (2016)

    Article  Google Scholar 

  5. R Khordad and H R R Sedehi J. Low. Temp. Phys. 190 200 (2018)

    Article  ADS  Google Scholar 

  6. M Tiotsop, A J Fotue, H B Fotsin and Fai L.C Superlattices and Microstruct. 105 163 (2017)

    Article  ADS  Google Scholar 

  7. L Wendler Phys. Rev. B. 57 9214 (1998)

    Article  ADS  Google Scholar 

  8. N Li, K X Guo and G H Liu Superlattices and Microstruct. 52 41 (2012)

    Article  ADS  Google Scholar 

  9. R Khordad Physica E 69 249 (2015)

    Article  ADS  Google Scholar 

  10. J L Xiao Int. J. Theor. Phys. 55 147 (2016)

    Article  Google Scholar 

  11. Y Sun, Z H Ding and J L Xiao Theor. Phys. 67 337 (2017)

    ADS  Google Scholar 

  12. C Y Hsieh, A Rene and P Hawrylak Phys. Rev. B 86 115312 (2011)

    Article  ADS  Google Scholar 

  13. D Solenov, S E Economou and T L Reinecke Phys. Rev. B 87 477 (2012)

    Google Scholar 

  14. P Kok, W J Munro, K Nemoto, T C Ralph and J P Dowling Rev. Mod. Phys. 79 797 (2007)

    Article  ADS  Google Scholar 

  15. A J Fotue, M F C Fobasso, S C Kenfack, M Tiotsop and J-R D Djomou et al Eur. Phys. J. Plus. 131 1 (2016)

    Article  Google Scholar 

  16. Y F Yu, J L Xiao, J W Yin and Z W Wang Chin. Phys. B 17 2236 (2008)

    Article  ADS  Google Scholar 

  17. Y Sun, Z H Ding and J L Xiao J. Electron. Mater. 45 3576 (2016)

    Article  ADS  Google Scholar 

  18. X J Ma, B Qi and J L Xiao J. Low. Temp. Phys. 180 315 (2015)

    Article  ADS  Google Scholar 

  19. J L Xiao Mod. Phys. Lett. B. 29 1550098 (2015)

    Article  ADS  Google Scholar 

  20. S C Kenfack, A J Fotue, M F C Fobasso, J-R. D Djomou, M Tiotsop, K S L Ngouana and L C Fai Indian J. Phys. 91 1525 (2017)

    Article  ADS  Google Scholar 

  21. A Cetin Phys. Lett. A 372 3852 (2008)

    Article  ADS  Google Scholar 

  22. L D Landau and S I Pekar Zh. Eksp. Teor. Fiz. 18 419 (1948)

    Google Scholar 

  23. S I Pekar and M F Deigen Zh. Eksp. Teor. Fiz. 18 481 (1948)

    Google Scholar 

  24. L D Landau and E M Lifshitz Quantum Mechanics (Nonrelativistic Theory) (London: pergamon) (1959)

    Google Scholar 

  25. M Tiotsop, A J Fotue, S C Kenfack, H B Fotsin and L C Fai Ind. J. Phys. 90 1049 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Item of Institution of Higher Education Scientific Research of Hebei Province, China (QN2017074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z. The ground-state lifetime of polaron in a two-dimensional quantum pseudodot system. Indian J Phys 93, 707–711 (2019). https://doi.org/10.1007/s12648-018-1339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1339-5

Keywords

PACS Nos.

Navigation