Skip to main content
Log in

Generation of W state by combining adiabatic passage and quantum Zeno techniques

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We propose a scheme to prepare W state for three atoms in a cavity via adiabatic passage and quantum Zeno dynamics. Appropriate Rabi frequencies of the classical fields are selected to realize the present scheme. Numerical analysis is showed, which indicates that the scheme is robust against the floating of the pulse delay and laser intensity, and the atomic spontaneous radiation and the cavity decay are efficiently suppressed by engineering adiabatic passage. Moreover, the scheme is more achievable in experiment than other existing schemes. Based on the current experimental technology, this scheme for generation of high-fidelity W state for three atoms can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Abdel-Khalek and T A Nofal Physica A 390 2626 (2011)

    Article  ADS  Google Scholar 

  2. S Abdel-Khalek, S H A Halawani and A S F Obada Int. J. Theor. Phys. 56 2898 (2017)

    Article  Google Scholar 

  3. R Dermez and S Abdel-Khalek J. Russ. Laser Res. 32 287 (2011)

    Article  Google Scholar 

  4. A S F Obada, S Abdel-Khalek, D A M Abo-Kahla Opt. Commun. 283 4662 (2010)

    Article  ADS  Google Scholar 

  5. Y H Chen, Y Xia, Q Q Chen and J Song Phys. Rev. A 91 012325 (2015)

    Article  ADS  Google Scholar 

  6. Y H Kang, Y H Chen, Z C Shi, J Song and Y Xia Phys. Rev. A 94 052311 (2016)

    Article  ADS  Google Scholar 

  7. Y H Kang, Y H Chen, Z C Shi, B H Huang, J Song and Y Xia Phys. Rev. A 94 022304 (2017)

    Article  ADS  Google Scholar 

  8. Y H Kang, B H Huang, P M Lu, Y Xia Laser Phys. Lett. 14 025201 (2017)

    Article  ADS  Google Scholar 

  9. J L Wu, X Ji, S Zhang Sci. Rep.  7 46255 (2017)

    Article  ADS  Google Scholar 

  10. B H Huang, Y H Chen, Q C Wu, J Song and Y Xia Laser Phys. Lett. 13 052311 (2016)

    Google Scholar 

  11. A Cabello Phys. Rev. Lett. 89 100402(2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. H Salih Phys. Rev. A 90 012333 (2014)

    Article  ADS  Google Scholar 

  13. M Y Wang and F L Yan Chin. Phys. B 20 120309 (2011)

    Article  ADS  Google Scholar 

  14. J X Fang, Y S Lin, S Q Zhu and X F Chen Phys. Rev. A 67 014305 (2003)

    Article  ADS  Google Scholar 

  15. S B Zheng Phys. Rev. A 66 014103 (2002)

  16. A Cabello Phys. Rev. A 65 032108 (2002)

    Article  ADS  Google Scholar 

  17. B S Shi and A Tomita Phys. Lett. A 296 161 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. J Joo, Y J Park, S Oh and J Kim New J. Phys. 5 136 (2003)

    Article  ADS  Google Scholar 

  19. C F Roos, M Riebe, H Häffner, W Hänsel, J Benhelm, G P Lancaster, C Becher, F Schmidt-Kaler and R Blatt Science 304 1478 (2004)

    Article  ADS  Google Scholar 

  20. M Eibl, N Kiesel, M Bourennane, C Kurtsiefer and H Weinfurter Phys. Rev Lett. 92 077901 (2004)

    Article  ADS  Google Scholar 

  21. C L Zhang, W Z Li and M F Chen Opt. Commun. 312 269 (2014).

    Article  ADS  Google Scholar 

  22. S S Ma Commun. Theor. Phys. 54 521 (2010)

    Article  ADS  Google Scholar 

  23. J Zou and X Hu Opt. Commun. 281 5067 (2008)

    Article  ADS  Google Scholar 

  24. R Sweke, I Sinayskiy and F Petruccione Phys. Rev. A 87 042323 (2013)

    Article  ADS  Google Scholar 

  25. M A Talab, S Guérin and H R Jauslin Phys. Rev. A 72 012339 (2005)

    Article  ADS  Google Scholar 

  26. M A Talab, S Guérin, N Sangouard and H R Jauslin Phys. Rev. A 71 023805 (2005)

    Article  ADS  Google Scholar 

  27. X Lacour, N Sangouard, S Guérin and H R Jauslin Phys. Rev. A 73 042321 (2006)

    Article  ADS  Google Scholar 

  28. A S Zheng, J B Liu and H Y Chen Chin. Phys. Lett. 28 080303 (2011)

    Article  ADS  Google Scholar 

  29. Z B Yang, H Z Wu and S B Zheng Chin. Phys. B 19 094205 (2010)

    Article  ADS  Google Scholar 

  30. Z Chen, Y H Chen and Y Xia J. Mod. Optic 63 92 (2016)

    Article  ADS  Google Scholar 

  31. K Bergmann, H Theuer and B W Shore Rev. Mod. Phys. 70 1003 (1998)

    Article  ADS  Google Scholar 

  32. N V Vitanov, K A Suominen and B W Shore J. Phys. B Mol. Opt. Phys. 32 4535 (1999)

    Article  ADS  Google Scholar 

  33. B Misra and E C G Sudarshan J. Math. Phys. 18 756 (1977)

    Article  ADS  Google Scholar 

  34. P Kwiat, H Weinfurter, T Herzog, A Zeilinger and M A Kasevich Phys. Rev. Lett. 74 4763 (1995)

    Article  ADS  Google Scholar 

  35. E W Streed, J Mun, M Boyd, G K Campbell, P Medley, W Ketterle and D E Pritchard Phys. Rev. Lett. 97 260402 (2006)

    Article  ADS  Google Scholar 

  36. P Facchi,V Gorini, G Marmo, S Pascazio and E C G Sudarshan Phys. Lett. A 275 12 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. P Facchi, S Pascazio, A Scardicchio and L S Schulman Phys. Rev. A 65 012108 (2002)

    Article  ADS  Google Scholar 

  38. W A Li and L F Wei Opt. Express 20 13440 (2012)

    Article  ADS  Google Scholar 

  39. G Barontini, L Hohmann, F Haas, J Est\(\grave{e}\)ve and J Reichel Science 349 1317 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. J L Wu, C Song,J Xu ,L Yu, X Ji and S Zhang Quantum Inf. Process. 15 3663 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. M F Chen, Y F Chen and S S Ma Quantum Inf. Processi 15 1469 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Y F Chen and M F Chen Opt. Commun. 364 29 (2016)

    Article  ADS  Google Scholar 

  43. W J Shan, Y H Chen, Y Xia and J Song J. Mod. Optic 62 1591 (2015)

    Article  ADS  Google Scholar 

  44. P Facchi, G Marmo and S Pascazio J. Phys. Conf. Ser. 196 012017 (2009)

    Google Scholar 

  45. Z B Yang, H Z Wu, W J Su and S B Zheng Phys. Rev. A 80 012305 (2009)

    Article  ADS  Google Scholar 

  46. U Gaubatz, P Rudecki, S Schiemann and K Bergmann J. Chem. Phys. 92 5363 (1990)

    Article  ADS  Google Scholar 

  47. A C Dada, J Leach, G S Buller, M J Padgett and E Andersson Nat. Phys. 7 677 (2011)

    Article  Google Scholar 

  48. J R Kuklinski, U Gaubatz, F T Hioe and K Bergmann Phys. Rev. A 40 6741 (1989)

    Article  ADS  Google Scholar 

  49. G S Agarwal Opt. Commun. 2 357 (1970)

  50. X F Zhou, Y S Zhang and G C Guo Phys. Lett. A 363 263 (2007)

    Article  ADS  Google Scholar 

  51. M Keller, B Lange, K Hayasaka, W Lange and H Walther Nature 431 1075 (2004)

    Article  ADS  Google Scholar 

  52. M Keller, B Lange, K Hayasaka, W Lange and H Walther New J. Phys. 6 95 (2004)

    Article  ADS  Google Scholar 

  53. A Stute, B Casabone, P Schindler, T Monz, P O Schmidt, B Brandstätter, T E Northup and R Blatt Nature 485 482 (2012)

    Article  ADS  Google Scholar 

  54. J R Buck and H J Kimble Phys. Rev. A 67 033806 (2003)

    Article  ADS  Google Scholar 

  55. A B Mundt, A Kreuter, C Becher, D Leibfried, J Eschner, F S Kaler and R Blatt Phys. Rev. Lett. 89 103001 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of the Fujian Education Department (Grant No. JB14220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CL., Liu, WW. Generation of W state by combining adiabatic passage and quantum Zeno techniques. Indian J Phys 93, 67–73 (2019). https://doi.org/10.1007/s12648-018-1256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1256-7

Keywords

PACS Nos.

Navigation