Skip to main content
Log in

Crystal field study of Chromium(III) ions doped antimony phosphate glass: Fano’s antiresonnance and Neuhauser models

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The absorption spectrum of antimony phosphate glass doped with Cr3+ is characterized by the presence of features on the 4T2g(4F) absorption band. These features result from the interaction of the 2Eg(2G) and 2T1g(2G) sharp levels with the vibrationally broadened 4T2g(4F) quasi-continuum via spin-orbit coupling called interference dips. We have analyzed this phenomenon through two models: Fano’s antiresonance and Neuhauser models. This analysis permits us to determine the electronic structure of the chromium ion Cr3+ based on the crystal field theory. As a result, Racah and crystal-field parameters have been reliably obtained. A good agreement between the theoretical and the experimental energy levels are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E L Falcão Filho, C A C Bosco, G S Maciel, Cid B De Araújo, L H Acioli, M Nalin and Y Messaddeq Appl. Phys. Lett. 83 1292 (2003)

    Article  ADS  Google Scholar 

  2. F S De Vicente, M Siu Li and Y Messaddeq J. Non-cryst. Solids 348 245 (2004)

    Article  ADS  Google Scholar 

  3. M Nalin, Y Messaddeq, S J L Ribeiro, M Poulain and V Briois J. Optoelectron. Adv. Materials, 3 553 (2001)

    Google Scholar 

  4. A Datta, A K Giri and D Chakraborty Phys. Rev. B 47 16242 (1993)

    Article  ADS  Google Scholar 

  5. W H Zachariasen J. Am. Chem. Soc. 54 3841 (1932)

    Article  Google Scholar 

  6. J Drube, B Sturve and G Huber Opt. Commun. 50 45 (1984)

    Article  ADS  Google Scholar 

  7. P Kenyon, L Andrews, B McCollum and A Lempickie IEEE Quantum Electron. 18 1189 (1982)

    Article  ADS  Google Scholar 

  8. D C Yeh, W A Sibley, M Suscavage and M G Drexhage J. Appl. Phys. 62 266 (1987)

    Article  ADS  Google Scholar 

  9. M G Drexhage Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus (New York: Academic Press) 26 (1985)

    Google Scholar 

  10. J M Senior, Optical Fiber Communications: Principles and Practice, 3rd edn (London: Prentice Hall), Englewood Cliffs, NJ (1985)

  11. G Keisir Optical Fiber Communications, 3rd edn (USA: Ergodebooks), Mcgraw-Hill College (1999)

  12. A Terzynska-Madej, K Cholewa-Kowalaska and M Laczka Opt. Mater. 32 1456 (2010)

    Article  ADS  Google Scholar 

  13. C R Bamford (Colour Generation and Control in Glass) (Amsterdam and New York: Elsevier Scientific Publishing Co) p 224 (1977)

    Google Scholar 

  14. G. Racah Phys. Rev. 62 438 (1942)

    Article  ADS  Google Scholar 

  15. F S De Vicente, F A Santos, B S Simoes, S T Dias and M Siu Li Opt. Mater. 38 119 (2014)

    Article  ADS  Google Scholar 

  16. M D Sturge, H J Guggenheim and M H Pryce Phys. Rev. B, 2 2459 (1970)

    Article  ADS  Google Scholar 

  17. A Lempicki, L Andrews, S J Nettel, B C McCollum and E I Solomon Phys. Rev. Lett. 44 1234 (1980)

    Article  ADS  Google Scholar 

  18. D Neuhauser, T Park and J I Zink, Phys. Rev. Lett. 85 5304 (2000).

    Article  ADS  Google Scholar 

  19. G Bussière, C Reber, D Neuhauser, D A Walter and J I Zink, J. Phys. Chem. A 107 1258 (2003)

    Article  Google Scholar 

  20. S Sugano, Y Tanabe and H Kamimura Multiplets of Transition-Metal Ions in Crystals (New York, London: Academic Press) Fossil Books, Baldwin’s Scientific Books, S Sugano, Y Tanabe, H Kamimura (1970)

    Google Scholar 

  21. J S Griffith, The Theory of transition-metal ions (Cambridge: The Press Syndicate of the University of Cambridge) Cambridge University Press p 222 (1961)

  22. R C Powell Physics of Solid-State Laser Materials (New York :Springer) Springer Science & Business Media, Vol. 1. 215 (1998)

  23. D J Newman and B. Ng Crystal Field Handbook (UK: Cambridge University Press) D J Newman and B. Ng p 28 (2000)

  24. B G Wybourne Spectroscopic Properties of Rare Earth, 1st ed (USA: Library of Congress), Wiley p 48 (1965)

  25. J P Elliott, B R Judd and W A Runciman Proc. R. Soc. Lond. 240 509 (1957)

    Article  ADS  Google Scholar 

  26. M G Zhao, J A Xu, G R Bai and H S Xie Phys. Rev. B. 27 1516 (1983)

    Article  ADS  Google Scholar 

  27. Y Tanabe and S Sugano, J. Phys. Soc. Jpn. 9 766 (1954)

    Article  ADS  Google Scholar 

  28. Y Y Yeung and C Rudowicz Comput. Chem. 16 207 (1992).

    Article  Google Scholar 

  29. O Taktak, H Souissi, O Maalej, B Boulard and S Kammoun, J. Lumin. 180 183 (2016).

    Article  Google Scholar 

  30. W Seeber, D Ehrt and D Eberdorff-Heidepriem J. Non-Cryst. Solids. 171 94 (1994)

    Article  ADS  Google Scholar 

  31. C K Jorgensen and H Hartmann, Absorption Spectra and Chemical Bonding in Complexes (Oxford, London, New York, Paris: Pergamon Press) Wiley p 113 (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Souissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souissi, H., Taktak, O. & Kammoun, S. Crystal field study of Chromium(III) ions doped antimony phosphate glass: Fano’s antiresonnance and Neuhauser models. Indian J Phys 92, 1153–1160 (2018). https://doi.org/10.1007/s12648-018-1212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1212-6

Keywords

PACS No.

Navigation