Skip to main content
Log in

Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present study, the main concern is to investigate the magnetohydrodynamic nanofluid flow subject to porous matrix and convective heating past a permeable linear stretching sheet. In addition, the influence of velocity slip, viscous dissipation, Joule heating and non-linear thermal radiation are considered. A new micro-convection model known as the Patel model is implemented for considerable enhancement of the thermal conductivity and hence, the heat transfer capability of nanofluids. Moreover, a convective heat transfer model is introduced where the bottom surface of the sheet gets heated due to a convection mechanism from a hot fluid of particular temperature. The numerical results of the transformed governing differential equations have been obtained by using fourth-order Runge–Kutta method along with shooting approach and secant method is used for better approximation. In the present analysis, base fluids such as water and Ethylene glycol and Copper, Silver and Aluminum oxide nanoparticles are considered. Results of the present investigation show that inclusion of porous matrix contributes to slow down the fluid velocity and diminution of wall shear stress (axial as well as transverse). Drag force due to magnetic field strength, velocity slip and imposed fluid suction impede the fluid motion and upsurge the heat transfer rate from the surface. In addition, rise in viscous dissipation widens the thermal boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B C Sakiadis AIChE J. 7(1) 26 (1961)

    Article  Google Scholar 

  2. L J Crane Z Angew Math Phys (ZAMP) 21(4) 645 (1970)

    Article  Google Scholar 

  3. A J Chamkha, J Peddieson Int. J. Multiphase Flow 6 805 (1991)

    Article  Google Scholar 

  4. R Masrour, L Bahmad, E K Hlil, M Hamedoun and A Benyoussef Indian J. Phys. https://doi.org/10.1007/s12648-015-0771-z

  5. M K Nayak, G C Dash and L P Singh Int. J. Heat Mass Transfer 79 1087 (2014)

    Article  Google Scholar 

  6. S U S Choi ASME Fluids Eng. Division 231 99 (1995)

  7. W A Khan and I Pop Int. J. Heat Mass Transf. 53 2477 (2010)

    Article  Google Scholar 

  8. M K Nayak, N S Akbar, V S Pandey, Z H Khan and D Tripathi Powder Technol. 315 205 (2017)

    Article  Google Scholar 

  9. M K Nayak, N S Akbar, V S Pandey, Z H Khan and D Tripathi Adv. Powder Technol. 28(9) 2159 (2017)

    Article  Google Scholar 

  10. M K Nayak Int. J. Mech. Sci. 125 185 (2017)

    Article  Google Scholar 

  11. M K Nayak, G C Dash and L P Singh Walailak J. Science and Technology 12(9) 785 (2015)

    Google Scholar 

  12. D Saikia, J P Borah, M Jangra and A Puzari Indian J. Phys. 90(5) 549 (2016)

    Google Scholar 

  13. M K Nayak and G C Dash Modell. Meas. Control B 84(2) 125 (2015)

    Google Scholar 

  14. M Sheikholeslami and M M Bhatti Int. J. Heat Mass Transfer 109 115 (2017)

    Article  Google Scholar 

  15. M M Bhatti and M M Rashidi J. Mol. Liq. 221 567 (2016)

    Article  Google Scholar 

  16. M M Bhatti, T Abbas and M M Rashidi Comput. Design Eng. 4(1) 21 (2017)

    MathSciNet  Google Scholar 

  17. S S Nourazar, M Hatami, D D Ganji and M Khazayinejad Powder Technol. 317 310 (2017)

    Article  Google Scholar 

  18. R Rabhi, B Amami, H Dhari and A Mhimid Indian J. Phys. https://doi.org/10.1007/s12648-017-1038-7

  19. S Das, R N Jana and O D Makinde Defect Diffus. Forum 377 42 (2017)

    Article  Google Scholar 

  20. M M Bhatti, M Seikholeslami and A Zeeshan Int. J. Heat Mass Transfer 111 1039 (2017)

    Article  Google Scholar 

  21. M M Bhatti, M Seikholeslami and A Zeeshan Entropy 19(9) 481 (2017)

    Article  Google Scholar 

  22. M M Bhatti, T Abbas and M M Rashidi Appl. Math. Comput. 316 381 (2018)

    Google Scholar 

  23. S Dinarvand, A Doosthoseini, E Doosthoseini and M M Rashidi Nonlin. Anal. Real World Appl. 11(2) 1159 (2010)

    Google Scholar 

  24. K P Priyadarsan, M K Nayak and S Panda Am. J. Heat Mass Transf. 4(2) 64 (2017)

    Google Scholar 

  25. M K Nayak Modell. Meas. Control B 85(1) 91 (2016)

  26. M K Nayak Modell. Meas. Control B 85(1) 43 (2016)

  27. M K Nayak, G C Dash and L P Singh J. Appl. Anal. Comput. 4(4) 367 (2014)

    MathSciNet  Google Scholar 

  28. J Qing, M M Bhatti, M Ali Abbas, M M Rashidi and M El-Sayed Ali Entropy 18(4) 123 (2016)

    Google Scholar 

  29. M K Nayak Modell. Meas. Control B 85(1) 105 (2016)

  30. M K Nayak, G C Dash and L P Singh Propuls. Power Res. 5 70 (2016)

  31. M K Nayak Modell. Meas. Control B 84(2) 52 (2015)

  32. M K Nayak and G C Dash Modell. Meas. Control B 84(2) 1 (2015)

    Google Scholar 

  33. N S Akbar, Z H Khan and S Nadeem J. Mol. Liq. 196 21 (2014)

    Article  Google Scholar 

  34. M Turkyilmazoglu Int. J. Therm. Sci. 50 2264 (2011)

  35. M Turkyilmazoglu Comp. Fluids 70 53 (2012)

  36. A K Abdul Hakeem, S Saranya and B Ganga J. Mol. Liq. 230 445 (2017)

    Article  Google Scholar 

  37. M Mustafa and J A Khan J. Mol. Liq. 234 287 (2017)

    Article  Google Scholar 

  38. R Ahmad, M Mustafa and M Turkyilmazoglu Int. J. Heat Mass Transf. 111 827 (2017)

    Article  Google Scholar 

  39. M J Uddin, W A Khan and A I Md Ismail Indian J. Phys. https://doi.org/10.1007/s12648-015-0802-9

  40. M K Nayak, N S Akbar, D Tripathi and V S Pandey Thermal Sci. Eng. Progress 3 133 (2017)

    Google Scholar 

  41. M K Nayak Meccanica 51 1699 (2016)

    Article  MathSciNet  Google Scholar 

  42. M K Nayak, G C Dash and L P Singh Arab. J. Sci. Eng. 40(11) 3029 (2015)

    MathSciNet  Google Scholar 

  43. M M Bhatti, A Zeeshan and R Ellahi Pramana J Phys. 89(3) 48 (2017)

    Article  Google Scholar 

  44. S Das, S K Guchhait, R N Jana and O D Makinde Alex. Eng. J. 55(2) 1321 (2016)

    Google Scholar 

  45. O D Makinde and I L Animasaun Int. J. Thermal Sci. 109 159 (2016)

    Article  Google Scholar 

  46. F Mabood, S M Ibrahim, M M Rashidi, M S Shadloo and G Lorenzini Int. J. Heat Mass Transf. 93 674 (2016)

    Article  Google Scholar 

  47. F Mabood, S Shateyi, M M Rashidi, E Momoniat and N Freidoonimehr, Adv. Powder Technol. 27 742 (2016)

    Article  Google Scholar 

  48. P M Krishna, N Sandeep, R P Sharma and O D Makinde Defect Diffus. Forum 377 141 (2017)

  49. S Das, S Chakraborty, R N Jana and O D Makinde Appl. Math. Mechan. 36(12) 1593 (2015)

    Article  MathSciNet  Google Scholar 

  50. T Hayat, M Imtiaz, A Alsaedi and M A Kutbi J. Magn Magnetic Mater. 396 31 (2015)

    Article  ADS  Google Scholar 

  51. M Q Brewster Thermal Radiative Transfer Properties (New York: Wiley) (1972)

  52. H E Patel, T Sundararajn, T Pradeep, A Dasgupta, N Dasgupta and S K Das Pramana J. Phys. 65(5) 863 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M.K., Shaw, S., Pandey, V.S. et al. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J Phys 92, 1017–1028 (2018). https://doi.org/10.1007/s12648-018-1188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1188-2

Keywords

PACS No.

Navigation