Skip to main content
Log in

Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Tietz-Hua potential is modified by the inclusion of \( D_{e} \left( {\frac{{C_{h} - 1}}{{1 - C_{h} e^{{ - b_{h} \left( {r - r_{e} } \right)}} }}} \right)be^{{ - b_{h} \left( {r - r_{e} } \right)}} \) term to the Tietz-Hua potential model since a potential of such type is very good in the description and vibrational energy levels for diatomic molecules. The energy eigenvalues and the corresponding eigenfunctions are explicitly obtained using the methodology of parametric Nikiforov-Uvarov. By putting the potential parameter \( b = 0, \) in the modified Tietz-Hua potential quickly reduces to the Tietz-Hua potential. To show more applications of our work, we have computed the Shannon entropy and Information energy under the modified Tietz-Hua potential. However, the computation of the Shannon entropy and Information energy is an extension of the work of Falaye et al., who computed only the Fisher information under Tietz-Hua potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S M Ikhdair and J Abu-Hasna Phys. Scr. 83 025002 (2011)

    Article  ADS  Google Scholar 

  2. T T Ibrahim, K J Oyewumi and S M Wyngaardt Eur. Phys. J. Plus. 127 100 (2012)

    Article  Google Scholar 

  3. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov Can. J. Phys. 90 633 (2012)

    ADS  Google Scholar 

  4. O J Oluwadare and K J Oyewumi Eur. Phys. J. Plus. 131 295 (2016)

    Article  Google Scholar 

  5. B J Falaye Few-Body Syst. 53 557 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. S M Ikhdair and B J Falaye Chin. Phys. 421 84 (2013)

    Google Scholar 

  7. C Onate, K J Oyewumi and B J Falaye Few-Body Syst. 55 61 (2014)

    Article  ADS  Google Scholar 

  8. P Q Wang, J Y Liu, L H Zhang, S Y Cao and C S Jia J. Mol. Spectrosc. 278, 23 (2012)

    Article  ADS  Google Scholar 

  9. G F Wei, W L Chen and S H Dong Phys. Lett. A. 378 2367 (2004)

    Article  ADS  Google Scholar 

  10. D Agboola Commun. Theor. Phys. 55 972 (2011)

    ADS  Google Scholar 

  11. A N Ikot and L E Akpabio Appl. Phys. Research 2 202 (2010)

    Article  Google Scholar 

  12. A D Antia, A N Ikot, H Hassanabadi and E Magshoodi Indian J. Phys. 87 1133 (2013)

    Google Scholar 

  13. A N Ikot, O A Awoga, H Hassanabadi and E Magshoodi Commun. Theor. Phys. 61 457 (2014)

    Article  Google Scholar 

  14. M C Onyeaju, A N Ikot, E O Chukwuocha, H P Obong, S Zare and H Hassanabadi Few-Body Syst. 57 823 (2016)

    Article  ADS  Google Scholar 

  15. C A Onate, M C Onyeaju and A N Ikot Ann. Phys. 375 239 (2016)

    Google Scholar 

  16. W C Qiang and S H Dong Phys. Lett. A 368, 13(2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. G F Wei and S H Dong Phys. Lett. B 686, 288(2010)

    Article  ADS  Google Scholar 

  18. S H Dong, W C Qiang, G H Sun and V B Bezerra J. Phys. A:Math. Theor. 40, 10535(2007)

    Article  ADS  Google Scholar 

  19. H Hassanabadi, L L Lu, S Zarrinkamar, G H Liu and H Rahimov Act. Phys. Polo-Ser. A. Gen. Phys. 122 650 (2012)

    Google Scholar 

  20. H Hassnabadi, B H Yazarloo and S Zarrinkamar Arabian J. Sci. Engr. 39 495 (2014)

    Article  MathSciNet  Google Scholar 

  21. P M Morse Phys. Rev. 34 57 (1929)

    Google Scholar 

  22. E Levin, H Partridge and J R Stallcop J. Thermophys. Heat Transfer 4 469 (1990)

    Article  ADS  Google Scholar 

  23. R T Pack J. Chem. Phys. 57 4612 (1972)

    ADS  Google Scholar 

  24. G A Natanson Phys. Rev. A. 44 3377 (1991)

    Article  ADS  Google Scholar 

  25. S MIkhdair Phys. Scr. 83 015010 (2011)

    Article  ADS  Google Scholar 

  26. B J Falaye, K J Oyewumi, T T Ibrahim, M A Punyasena and C A Onate Can. J. Phys. 98 104 (2013)

    Google Scholar 

  27. K J Oyewumi, B J Falaye, C A Onate, O J Oluwadare and W A Yahya Mol. Phys. 112 127 (2014)

    Article  ADS  Google Scholar 

  28. C Y Chen, Y You, F L Lu and S H Dong Phys. Lett. A. 377 1070 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. A N Ikot and O Akpan Chin. Phys. Lett. 29 09032 (2012)

    Google Scholar 

  30. C A Onate, M C Onyeaju, A N Ikot and J O Ojonubah Chin. J. Phys. 54 820 (2016)

    Article  Google Scholar 

  31. M Hamzavi, A A Rajabi and H Hassanabadi Mol. Phys. 110 389 (2012)

    Article  ADS  Google Scholar 

  32. B J Falaye, S M Ikhdair and M Hamzavi J. Theor. Appl. Phys. 9 151 (2015)

    Article  Google Scholar 

  33. S M Ikhdair and M Hamzavi Few-Body Syst. 53 473 (2012)

    Article  ADS  Google Scholar 

  34. C S Jia, Y F Diao, X J Liu, P Q Wang, J Y Liu and G D Zhang J. Chem. Phys. 137 014101 (2012)

    ADS  Google Scholar 

  35. P Q Wang, L H Zhang, C S Jia, L Y Liu. J. Mol. Spect. 274 5 (2012)

    Article  ADS  Google Scholar 

  36. H Wei Phys. Rev. A. 42 2524 (1990)

    Article  Google Scholar 

  37. T Tietz J. Chem. Phys. 38 3036 (1963)

    Article  ADS  Google Scholar 

  38. B J Falaye, K J Oyewumi, S M Ikhdair and M Hamzavi Phys. Scr. 89 473 (2014)

    Article  Google Scholar 

  39. A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics. (Berlin: Birkhausr) (1998)

    MATH  Google Scholar 

  40. C Tezcan and R Sever Int J. Theor. Phys. 48 337 (2009)

    Article  Google Scholar 

  41. M G Miranda, G H Sun and S H Dong Int. J. Mod. Phys. E 19 123 (2010)

    Article  ADS  Google Scholar 

  42. M C Zhang, G H Sun and S H Dong Phys. Lett. A. 374 704 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. M Hamzavi, K E Thylwe and A A Rajabi Commun. Theor. Phys. 601 (2013)

  44. C L Pekeris Phys. Rev. 45 98 (1934)

    Article  ADS  Google Scholar 

  45. S Touloum, A Gharbi and A Bouda Indian J. Phys. https://doi.org/10.1007/s12648-016-0941-7

  46. G H Sun and SH Dong Commun. Theor. Phys. 58 195 (2012)

    Google Scholar 

  47. C E Shannon Bell. Syst. Tech. J. 27 623 (1948)

    Article  Google Scholar 

  48. C S Jia, L H Zhang and C W Wang Chem. Phys. Lett. 667 211 (2017)

    Article  ADS  Google Scholar 

  49. C S Jia, C W Wang, L H Zhang, X L Peng, R Zeng and X T You Chem. Phys. Lett. 676 150 (2017)

    Google Scholar 

  50. X Q Song, C W Wang and C S Jia, Chem. Phys. Lett. 673 50 (2017)

    Article  ADS  Google Scholar 

  51. C S Jia, T He and Z W Shui, Comput. Theor. Chem. 1108, 57 (2017)

    Article  Google Scholar 

  52. Y Sun, G H Zhang and C S Jia, Chem. Phys. Lett. 636, 197 (2015)

    Article  ADS  Google Scholar 

  53. X T Hu, J Y Liu and C S Jia, Comput. Theor. Chem. 1019, 137 (2013

    Article  Google Scholar 

  54. G D Zhang, W Zhou, J Y Liu, L H Zhang and C S Jia, Chem. Phys. Lett. 439, 79 (2014)

    Google Scholar 

  55. G H Sun and S H Dong Phys. Scr. 87, 045003 (2013)

    Article  ADS  Google Scholar 

  56. G H Sun, P Dusan, N C Oscar and S H Dong Chin. Phys. B 24, 100303 (2013)

    Google Scholar 

  57. B F Falaye, F A Serrano and S H Dong Phys. Lett. A 380, 267 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A N Ikot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onate, C.A., Onyeaju, M.C., Ituen, E.E. et al. Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential. Indian J Phys 92, 487–493 (2018). https://doi.org/10.1007/s12648-017-1124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1124-x

Keywords

PACS No.

Navigation