Skip to main content
Log in

The orientation distribution of tunneling-related quantities

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the nuclear tunneling processes involving deformed nuclei, most of the tunneling-related quantities depend on the relative orientations of the participating nuclei. In the presence of different multipole deformations, we study the variation of a few relevant quantities for the α-decay and the sub-barrier fusion processes, in an orientation degree of freedom. The knocking frequency and the penetration probability are evaluated within the Wentzel–Kramers–Brillouin approximation. The interaction potential is calculated with Skyrme-type nucleon–nucleon interaction. We found that the width of the potential pocket, the Coulomb barrier radius, the penetration probability, the α-decay width, and the fusion cross-section follow consistently the orientation-angle variation of the radius of the deformed nucleus. The orientation distribution patterns of the pocket width, the barrier radius, the logarithms of the penetrability, the decay width, and the fusion cross-section are found to be highly analogous to pattern of the deformed-nucleus radius. The curve patterns of the orientation angle distributions of the internal pocket depth, the Coulomb barrier height and width, as well as the knocking frequency simulate inversely the variation of the deformed nucleus radius. The predicted orientation behaviors will be of a special interest in predicting the optimum orientations for the tunneling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M V Berry and K E Mount Rep. Prog. Phys. 35 315 (1972)

    Article  ADS  Google Scholar 

  2. K Hagino, N Rowley and A T Kruppa Comput. Phys. Commun. 123 143 (1999)

    Article  ADS  Google Scholar 

  3. L F Canto, P R S Gomes, R Donangelo and M S Hussein Phys. Rep. 424 1 (2006)

    Article  ADS  Google Scholar 

  4. S A Gurvitz and G Kalbermann Phys. Rev. Lett. 59 262 (1987)

    Article  ADS  Google Scholar 

  5. G Drukarev, N Fröman and P O Fröman J. Phys. A 12 171 (1979)

    Article  ADS  Google Scholar 

  6. D N Poenaru, M Ivaşcu and A. Săndulescu J. Phys. G Nucl. Part. Phys. 5 L169 (1979)

    Article  Google Scholar 

  7. D N Poenaru, M Ivaşcu, A Săndulescu and W Greiner Phys. Rev. C 32 572 (1985)

    Article  ADS  Google Scholar 

  8. S S Malik and R K Gupta Phys. Rev. C 39 1992 (1989)

    Article  ADS  Google Scholar 

  9. M Ismail, W M Seif, M M Osman, H El-Gebaly and N M Hassan Phys. Rev. C 72 064616 (2005)

    Article  ADS  Google Scholar 

  10. M Ismail, W M Seif and M M Botros Nucl. Phys. A 828 333 (2009)

    Article  ADS  Google Scholar 

  11. M Ismail and W M Seif, Phys. Rev. C 81 034607 (2010)

    Article  ADS  Google Scholar 

  12. G G Adamian, N V Antonenko, L A Malov, G Scamps and D Lacroix Phys. Rev. C 90 034322 (2014)

    Article  ADS  Google Scholar 

  13. N Wang, J Li, and E Zhao Phys. Rev. C 78 054607 (2008)

    Article  ADS  Google Scholar 

  14. G Sawhney, M K Sharma and R K Gupta Phys. Rev. C 83, 064610 (2011)

    Article  ADS  Google Scholar 

  15. W M Seif J. Phys. G Nucl. Part. Phys. 40 105102 (2013)

    Article  ADS  Google Scholar 

  16. N Wang, Z Li and W Scheid J. Phys. G Nucl. Part. Phys. 34 1935 (2007)

    Article  ADS  Google Scholar 

  17. W M Seif Eur. Phys. J. A 38, 85 (2008)

    Article  ADS  Google Scholar 

  18. V I Zagrebaev, Y Aritomo, M G Itkis, Y T Oganessian and M Ohta Phys. Rev. C 65 014607 (2001)

    Article  ADS  Google Scholar 

  19. M Trotta, A M Stefanini, S Beghini, B R Behera, L Corradi, E Fioretto, A Gadea, M. G. Itkis, G N Knyazheva, N A Kondratiev, E M Kozulin, N Mărginean, P Mason, G Montagnoli, I V Pokrovsky, R N Sagaidak, F Scarlassara, R Silvestri, S Szilner Nucl. Phys. A 787, 134c (2007)

    Article  ADS  Google Scholar 

  20. S Hofmann and G Münzenberg Rev. Mod. Phys. 72 733 (2000)

    Article  ADS  Google Scholar 

  21. Y Oganessian J. Phys. G Nucl. Part. Phys. 34 R165 (2007)

    Article  ADS  Google Scholar 

  22. S Hofmann, D Ackermann, S Antalic, H G Burkhard, V F Comas, R Dressler, Z Gan, S Heinz, J A Heredia, F P Heßberger, J Khuyagbaatar, B Kindler, I. Kojouharov, P Kuusiniemi, M Leino, B Lommel, R Mann, G Münzenberg, K Nishio, A G Popeko, S Saro, H J Schött, B Streicher, B Sulignano, J Uusitalo, M Venhart and A V Yeremin Eur. Phys. J. A 32, 251 (2007)

    Article  ADS  Google Scholar 

  23. M Ismail, W M Seif and M M Botros Int. J. Mod. Phys. E 25 1650026 (2016)

    Article  ADS  Google Scholar 

  24. R K Gupta, M Balasubramaniam, R Kumar, N Singh, M Manhas and W Greiner J. Phys. G Nucl. Part. Phys. 31 631 (2005)

    Article  ADS  Google Scholar 

  25. M Ismail and W M Seif Nucl. Phys. A 872 25 (2011)

    Article  ADS  Google Scholar 

  26. W M Seif Phys. Rev. C 91, 014322 (2015)

    Article  ADS  Google Scholar 

  27. N G Kelkar and H M Castañeda Phys. Rev. C 76 064605 (2007)

    Article  ADS  Google Scholar 

  28. C Y Wong Phys. Rev. Lett. 31 766 (1973)

    Article  ADS  Google Scholar 

  29. E Chabanat, E Bonche, E Haensel, J Meyer and R Schaeffer Nucl. Phys. A 635 231 (1998)

    Article  ADS  Google Scholar 

  30. A S Umar and V E Oberacker Phys. Rev. C 76 024316 (2007)

    Article  ADS  Google Scholar 

  31. J Rikovska Stone, J C Miller, R Koncewicz, P D Stevenson and M R Strayer Phys. Rev. C 68 034324 (2003)

    Article  ADS  Google Scholar 

  32. J W Negele and D Vautherin Phys. Rev. C 5 1472 (1972)

    Article  ADS  Google Scholar 

  33. J C Slater Phys. Rev. 81 385 (1951)

    Article  ADS  Google Scholar 

  34. P -G Reinhard Computational Nuclear Physics (Berlin: Springer-Verlag) (ed.) K Langanke, J A Maruhn and S E Koonin Vol. 1, p. 28 (1990)

  35. P Möller, J R Nix, W D Myers and W J Swiatecki At. Data Nucl. Data Tables 59 185 (1995)

    Article  ADS  Google Scholar 

  36. G Audi, F G Kondev, M Wang, B Pfeiffer, X Sun, J Blachot and M MacCormick Chin. Phys. C 36 1157 (2012)

    Article  Google Scholar 

  37. M Wang, G Audi, A H Wapstra, F G Kondev, M MacCormick, X Xu and B Pfeiffer Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  38. W M Seif, M Ismail and E T Zeini J. Phys. G Nucl. Part. Phys. 44 055102 (2017)

    Article  ADS  Google Scholar 

  39. W M Seif, M M Botros and A I Refaie Phys. Rev. C 92 044302 (2015)

    Article  ADS  Google Scholar 

  40. T Rajbongshi, K Kalita, S Nath, J Gehlot, T Banerjee, I Mukul, R Dubey, N Madhavan, C J Lin, A Shamlath, P V Laveen, M Shareef, N Kumar, P Jisha and P Sharma Phys. Rev. C 93 054622 (2016)

    Article  ADS  Google Scholar 

  41. S Raman, C W Nestor Jr. and P Tikkanen At. Data Nucl. Data Tables 78 1 (2001)

    Article  ADS  Google Scholar 

  42. H J Wollersheim, W Wilcke and T W Elze Phys. Rev. C 11 2008 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Seif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seif, W.M., Refaie, A.I. & Botros, M.M. The orientation distribution of tunneling-related quantities. Indian J Phys 92, 393–399 (2018). https://doi.org/10.1007/s12648-017-1106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1106-z

Keywords

PACS Nos.

Navigation