Skip to main content
Log in

Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( B_{0} \) :

Magnetic induction

\( Ec \) :

Eckert number

\( Ha \) :

Hartmann number

\( T_{\infty } \) :

Ambient fluid temperature

\( T_{m} \) :

Melting temperature

\( K \) :

Permeability

\( T_{0} \) :

Surface temperature

\( c_{s} \) :

Surface heat capacity

\( \Pr \) :

Prandtl number

\( T \) :

Fluid temperature

\( v,\,u \) :

Vertical and horizontal velocity

\( \sigma \) :

Electrical conductivity

\( \eta \) :

Similarity independent variable

\( \phi \) :

Volume fraction of nanofluid

\( \mu \) :

Dynamic viscosity

\( \alpha \) :

Thermal diffusivity

\( p \) :

Solid particles

\( f \) :

Base fluid

\( nf \) :

Nanofluid

\( \infty \) :

For \( \eta \to \infty \)

References

  1. F Selimefendigil and A J Chamkha J. Thermal Sci. Eng. Appl. 8 8 (2016)

    Article  Google Scholar 

  2. A Andreozzi, O Manca, S Nardini and D Ricci Appl. Thermal Eng. 98 1044 (2016)

    Article  Google Scholar 

  3. M Sheikholeslami and D D Ganji J. Taiwan Inst. Chem. Eng. 65 43 (2016)

    Article  Google Scholar 

  4. M A Sheremet, I Pop and N C Roşca J. Taiwan Inst. Chem. Eng. 61 211 (2016)

    Article  Google Scholar 

  5. A Malvandi, M H Kaffash and D D Ganji J. Taiwan Inst. Chem. Eng. 52 40 (2015)

    Article  Google Scholar 

  6. R Ahmad and M Mustafa J. Mol. Liq. 220 635 (2016)

    Article  Google Scholar 

  7. T Hayat, Z Nisar, H Yasmin and A Alsaedi J. Mol. Liq. 220 448 (2016)

    Article  Google Scholar 

  8. M M Bhatti and M M Rashidi J. Mol. Liq. 221 567 (2016)

    Article  Google Scholar 

  9. M Sheikholeslami and D D Ganji J. Mol. Liq. 233 499 (2017)

    Article  Google Scholar 

  10. F Selimefendigil and H F Öztop J. Mol. Liq. 216 67 (2016)

    Article  Google Scholar 

  11. M Sheikholeslami and D D Ganji Mater. Des. 120 382 (2017)

    Article  Google Scholar 

  12. M Sheikholeslami and H B Rokni J. Mol. Liq. 232 390 (2017)

    Article  Google Scholar 

  13. M A Sheremet, H F Oztop and I Pop J. Magn. Magn. Mater. 416 37 (2016)

    Article  ADS  Google Scholar 

  14. M S Kandelousi Eur. Phys. J. Plus 129 (2014) doi: 10.1140/epjp/i2014-14248-2

  15. M Sheikholeslami and M M Bhatti Int. J. Heat Mass Transf. 109 115 (2017)

    Article  Google Scholar 

  16. M Sheikholeslami and S A Shehzad Int. J. Heat Mass Transf. 109 82 (2017)

    Article  Google Scholar 

  17. M Sheikholeslami, K Vajravelu and M M Rashidi Int. J. Heat Mass Transf. 92 339 (2016)

    Article  Google Scholar 

  18. M Sheikholeslami Eur. Phys. J. Plus 132 55 (2017) doi: 10.1140/epjp/i2017-11330-3

  19. M Sheikholeslami and D D Ganji J. Mol. Liq. 229 566 (2017)

    Article  Google Scholar 

  20. M Sheikholeslami and D D Ganji Chem. Phys. Lett. 669 202 (2017)

    Article  ADS  Google Scholar 

  21. N S Akbar and Z H Khan J. Magn. Magn. Mater. 410 72 (2016)

    Article  ADS  Google Scholar 

  22. M Sheikholeslami, R Ellahi, H R Ashorynejad, G Domairry and T Hayat J. Comput. Theor. Nanosci. 11 1 (2014)

    Article  Google Scholar 

  23. F M Abbasi and S A Shehzad, T Hayat and B Ahmad J. Magn. Magn. Mater. 404 159 (2016)

    Article  Google Scholar 

  24. M Sheikholeslami J. Mol. Liq. 229 137 (2017)

    Article  Google Scholar 

  25. M Sheikholeslami Phys. Lett. A 381 494 (2017)

    Article  ADS  Google Scholar 

  26. M Sheikholeslami J. Mol. Liq. 225 903 (2017)

    Article  Google Scholar 

  27. M Sheikholeslami and H B Rokni Int. J. Heat Mass Transf. 107 288 (2017)

    Article  Google Scholar 

  28. M Sheikholeslami Int. J. Hydrog. Energy 42 821 (2017)

    Article  Google Scholar 

  29. M Sheikholeslami and D D Ganji J. Mol. Liq. 224 526 (2016)

    Article  Google Scholar 

  30. M Sheikholeslami, S Soleimani and D D Ganji J. Mol. Liq. 213 153 (2016)

    Article  Google Scholar 

  31. M Sheikholeslami and S Abelman IEEE Trans. Nanotechnol. 14 3 561 (2015)

    Article  ADS  Google Scholar 

  32. M Sheikholeslami and R Ellahi J. Zeitschrift Fur Naturforschung A 70 2 115 (2015)

    Google Scholar 

  33. M Sheikholeslami and D D Ganji Comput. Methods Appl. Mech. Eng. 283 651 (2015)

    Article  ADS  Google Scholar 

  34. M Sheikholeslami, D D Ganji, M Y Javed and R Ellahi J. Magn. Magn. Mater. 374 36 (2015)

    Article  ADS  Google Scholar 

  35. M Sheikholeslami and D D Ganji Energy 75 400 (2014)

    Article  Google Scholar 

  36. M Sheikholeslami and D D Ganji J. Appl. Fluid Mech. 7 3 535 (2014)

    Google Scholar 

  37. M Sheikholeslami, Z Ziabakhsh and D D Ganji Colloids Surf. A Physicochem. Eng. Asp. 520 201 (2017)

    Article  Google Scholar 

  38. M Sheikholeslami Phys. B 516 55 (2017)

    Article  ADS  Google Scholar 

  39. M Sheikholeslami and M M Bhatti Int. J. Heat Mass Transf. 111 1039 (2017)

    Article  Google Scholar 

  40. M Sheikholeslami J. Mol. Liq. 234 364 (2017)

    Article  Google Scholar 

  41. M Sheikholeslami and A Zeeshan Comput. Methods Appl. Mech. Eng. 320 68 (2017)

    Article  ADS  Google Scholar 

  42. A Raptis, Int. Commun. Heat Mass Transf. 25 289 (1998)

    Article  Google Scholar 

  43. M Epstein, D H Cho Melting heat transfer in steady laminar flow over a flat plate, J. Heat Transfer 98 531 (1976)

    Article  Google Scholar 

  44. M Rath, Comput. Fluids Int. J. 37 1 (2008)

    Article  Google Scholar 

  45. P R Sharma, G Singh J. Appl. Fluid Mech. 2 113 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Jafaryar, M., Bateni, K. et al. Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM. Indian J Phys 92, 205–214 (2018). https://doi.org/10.1007/s12648-017-1090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1090-3

Keywords

PACS Nos.

Navigation