Skip to main content
Log in

A theoretical study of structural, opto-electronic and nonlinear properties of arylboroxine derivatives

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Density functional theory at CAM-B3LYP/6-311G++ (2d, 2p) level was employed to study the Triphenylboroxine derivatives (TB) containing electron donating and electron substituents, for their charge transfer and nonlinear optical properties. The results reveal that electron donating groups facilitate the rapid electron injection as compared to unsubstituted TB. It was observed that upon substitution with electron donating groups, the TB derivatives show an increased double bond character in the B3–C18 bond indicating an increase in the degree of conjugation. The Frontier molecular orbital studies indicate that highest occupied molecular orbitals of the neutral molecules delocalize primarily over the three phenyl rings and bridging oxygen atoms, whereas the lowest unoccupied molecular orbitals localize largely on the two phenyl rings and the boron atoms. Further, the TD-DFT studies indicate that the maximum absorption band results from the electron transitions from the initial states that are contributed by the HOMO and HOMO-1 to the final states that are mainly contributed by the LUMOs. In addition, we have observed that the introduction of electron donating group to the TB-7 leads to more active nonlinear performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L Barton, F A Grimm, and R F Porter Inorg. Chem. 5 2076 (1966)

    Article  Google Scholar 

  2. C H Chakg, R F Porter and S H Baler Inorg. Chem. 8 1689 (1969)

    Article  Google Scholar 

  3. P W Fowler and E Steiner J. Phys. Chem. A 101 1409 (1997)

    Article  Google Scholar 

  4. L E Ennis and A P Hitchcock J. Chem. Phys. 111 3468 (1999)

    Article  ADS  Google Scholar 

  5. A P Côté, A I Benin, N M Ockwig, A J Matzger, M O’Keeffe and O M Yaghi Science 310 1166 (2005)

    Article  ADS  Google Scholar 

  6. G Borivoj, Removal of Skin Changes. U.S. Patent Class 424657. In Knobbe, Martens, Olsen & Bear LLP (2009)

  7. A B Morgan, J L Jurs and J M Tour J. Appl. Polym. Sci. 76 1257 (2000)

    Article  Google Scholar 

  8. Y Yang, T Inoue, T Fujinami and M A Mehta J. Appl. Polym. Sci. 84 17 (2002)

    Article  Google Scholar 

  9. M Forsyth, J Sun, F Zhou and D R MacFarlane Electrochim. Acta 48 2129 (2003)

    Article  Google Scholar 

  10. K Yano and I Karube, Trends Synth. Anal. Chem. 18 199 (1999)

    Article  Google Scholar 

  11. P M Iovine, C R Gyselbrecht, E K Perttu, C Klick, A Neuwelt, J Loera, A G Pasquale, A L Rheingold and J Kua Dalton Trans. 3791 (2008). doi:10.1039/B804705G

  12. F Iberiene, D Hammoutene, A Boucekkine, C Katan and M Blanchard-Desce J. Mol. Struct.: Theochem 866 58 (2008)

    Article  Google Scholar 

  13. G Alcaraz, L Euzenat, O Mongin, C Katan, I Ledoux, J Zyss, M Blanchard-Desce and M Vaultier Chem. Commun. 2766 (2003). doi:10.1039/B308664J

  14. N. Islam and S.S. Chimni Comput. Theor. Chem. 1086 58 (2016)

    Article  Google Scholar 

  15. G W Yeager and M Rubinstajn Encapsulants for solid state devices. U.S. Patent 6507049. In General Electric, 2003

  16. N Miyaura and A Suzuki Chem. Rev. 95 2457 (1995)

    Article  Google Scholar 

  17. X Wu, X Liu and G Zhao Tetrahedron: Asymmetry 16 2299 (2005)

    Article  Google Scholar 

  18. A P Cote, A I Benin, N W Ockwig, M O’Keefe, A J Matzger and O M Yaghi Science 310 1166 (2005)

    Article  ADS  Google Scholar 

  19. M A Beckett, G C Strickland, K S Varma, D E Hibbs, M B Hursthouse and K M A Malik J. Organomet. Chem. 535 33 (1997)

    Article  Google Scholar 

  20. H R Snyder, M S Konecky and W J Lennarz J. Am. Chem. Soc. 80 3611 (1958)

    Article  Google Scholar 

  21. M K Das, J F Mariategui and K Niedenzu Inorg. Chem. 26 3114 (1987)

    Article  Google Scholar 

  22. Q G Wu, G Wu, L Brancaleon and S Wang Organometallics 18 2553 (1999)

    Article  Google Scholar 

  23. G Vargas, I Hernandez, H Hopfl, M E Ochoa, D Castillo, N Farfan, R Santillan and E Gomez Inorg. Chem. 43 8490 (2004)

    Article  Google Scholar 

  24. H M El-Kaderi, J R Hunt, J L Mendoza-Cortes, A P Cote, R E Taylor, M O’Keeffe and O M Yaghi Science 316 268 (2007)

    Google Scholar 

  25. Y Qin, C Cui and F Jakle Macromolecules 40 1413 (2007)

    Article  ADS  Google Scholar 

  26. P M Iovine, M N Fletcher and S Lin Macromolecules 39 6324 (2006)

    Article  ADS  Google Scholar 

  27. Y Tokunaga, T Ito, H Sugawara and R Nakata Tetrahedron Lett. 49 3449 (2008)

    Article  Google Scholar 

  28. S Naka, H Okada, H Onnagawa, Y Yamaguchi and T Tsutsui Synth. Met. 111 331 (2000)

    Article  Google Scholar 

  29. T Yamada, T Sato, K Tanaka and H Kaji Org. Electron. 11 255 (2010)

    Article  Google Scholar 

  30. G Garcia, A Garzon, J M Granadino-Roldan, M Moral, A Navarro and M Fernandez-Gomez J. Phys. Chem. C 115 6922 (2011)

    Article  Google Scholar 

  31. B C Lin, C P Cheng, Z Q You and C P Hsu J. Am. Chem. Soc. 127 66 (2005)

    Article  Google Scholar 

  32. Y Yang, H Geng, S Yin, Z Shuai and J Peng J. Phys. Chem. B 110 3180 (2006)

    Article  Google Scholar 

  33. Y C Cheng, R J Silbey, D A da Silva Filho et al J. Chem. Phys. 118 3764 (2003)

    Article  ADS  Google Scholar 

  34. B C Lin, C P Cheng and Z P Lao J. Phys. Chem. A 107 5241 (2003)

    Article  Google Scholar 

  35. R A Marcus J. Chem. Phys. 26 867 (1957)

    Article  ADS  Google Scholar 

  36. R A Marcus J. Chem. Phys. 26 872 (1957)

    Article  ADS  Google Scholar 

  37. T Yamada, F Suzuki, A Goto, T Sato, K Tanaka and H Kaji Org. Electron. 12 169 (2011)

    Article  Google Scholar 

  38. N Islam and A H Pandith J. Mol. Model. 20 2535 (2014)

    Article  Google Scholar 

  39. A H Pandith and N Islam PLoS ONE (2014). doi:10.1371/journal.pone.0114125.

    Google Scholar 

  40. N Islam and I H Lone Front. Chem. (2017). doi:10.3389/fchem.2017.00011

    Google Scholar 

  41. G Alcaraz, L Euzenat, O Mongin, C Katan, I Ledoux, J Zyss, M Blanchard-Desce and M Vaultier Chem. Commun. 22 2766 (2003)

    Article  Google Scholar 

  42. M Albota, D Beljonne, J L Bredas, J E Ehrlich, J Y Fu, A A Heikal, S E Hess, T Kogej, M D Levin, S R Marder, D McCordmaughon, J W Perry, H Rockel, M Rumi, C Subramaniam, W W Webb, I L. Wu and C Xu Science 281 1653 (1998)

    ADS  Google Scholar 

  43. N Islam and S S Chimni J. Coord. Chem. 70 1221 (2017).

    Article  Google Scholar 

  44. C E Powell, J P Morall, S A Ward, M P Cifuentes, E G A Notaras, M Samoc and M G Humphrey J. Am. Chem. Soc. 26 12234 (2005)

    Google Scholar 

  45. J Zyss Nonlinear Opt. 1 3 (1991)

    Google Scholar 

  46. R J Doerksen and A J Thakkar J. Phys. Chem. A 103 10009 (1999)

    Article  Google Scholar 

  47. F Meyers, J L Bredas and J Zyss J. Am. Chem. Soc. 114 2914 (1992).

    Article  Google Scholar 

  48. J Brunel, O Mongin, A Jutand, I Ledoux, J Zyss and M Blanchard-Desce Chem. Mater. 15 4139 (2003)

    Article  Google Scholar 

  49. M Moreno Oliva, J. Casado, J T Lopez Navarrete, G Hennrich, M C RuizDelgado and J Orduna J. Phys. Chem. C 111 18778 (2007)

    Article  Google Scholar 

  50. X Zhou, J K Feng and A M Ren Chem. Phys. Lett. 403 7 (2005)

    Article  ADS  Google Scholar 

  51. N Islam, S Niaz, T Manzoor and A H Pandith Spectrochim. Acta A 131 461 (2014)

    Article  ADS  Google Scholar 

  52. N Islam and A H Pandith J. Coord. Chem. 67 3288 (2014)

    Article  Google Scholar 

  53. T Yanai, D Tew and N Handy Chem. Phys. Lett. 393 51 (2004).

    Article  ADS  Google Scholar 

  54. A D McLean and G S Chandler J. Chem. Phys. 72 5639 (1980)

    Article  ADS  Google Scholar 

  55. F Trani, G Scalmani, G S Zheng, I Carnimeo, M J Frisch and V Barone J. Chem. Theory Comput. 7 3304 (2011)

    Article  Google Scholar 

  56. N M O’Boyle, A L Tenderholt and K M Langer J. Comp. Chem. 29 839 (2008)

    Article  Google Scholar 

  57. M J Frisch et al Gaussian 09, Revision E.01 (Wallingford, CT: Gaussian Inc.) (2009)

  58. J E Leffler and E Grunwald Rates and Equilibria of Organic Reactions (New York: Wiley) (1963)

    Google Scholar 

  59. Y Fu, W Shen and M Li Macromol. Theory Simul. 17 385 (2008)

    Article  Google Scholar 

  60. K M Ervin, I Anusiewicz, P Skurski, J Simons and W C Lineberger J. Phys. Chem. A 107 (2003)

  61. J L Oudar and D S Chemla J. Chem. Phys. 66 2664 (1977).

    Article  ADS  Google Scholar 

  62. N Islam and S S Chimni Indian J. Phys. (2017). doi:10.1007/s12648-017-1000-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasarul Islam or Altaf Hussain Pandith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, N., Pandith, A.H. A theoretical study of structural, opto-electronic and nonlinear properties of arylboroxine derivatives. Indian J Phys 92, 57–68 (2018). https://doi.org/10.1007/s12648-017-1075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1075-2

Keywords

PACS No.

Navigation