Skip to main content
Log in

A theoretical investigation of the distribution of indoor radon concentrations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. In recent times, numerical modelling has become the cost effective replacement of experimental methods for the prediction and visualization of indoor pollutant distribution. The aim of this study is to implement the Finite Volume Method (FVM) for studying the radon distribution indoor. The findings show that the radon concentration which is distributed in a non-homogeneous way in the room is due to the difference in the radon concentration of different sources (wall, floor and ceiling). Moreover, the radon concentration is much larger near walls, and decreases in the middle of the room because of the effect of air velocity. We notice that the simulation results of radon concentration are in agreement with the results of other experimental studies. The annual effective dose of radon in the model room has been also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c:

Concentration of radon (Bqm−3)

ci :

Concentration of radon (Bqm−3) in inlet

L:

Height of the room (m)

p:

Pressure (Nm−2)

Pr:

Prandtl numbre

Sc:

Schmidt number

Sh:

Sherwood number

Nu:

Nusselt number

Re:

Reynolds number

Ra:

Rayleigh number

Ri:

Richardson number

Le:

Lewis number

N:

Buoyancy ratio

\({\bar{\varepsilon }}_{\text{c}}\) :

Overall effectiveness coefficient for contaminant distribution

Caverage :

Average concentration of (222Rn) inside the room (Bqm−3)

Coutlet :

Average concentration of 222Rn at the outlet (Bqm−3)

Cinlet :

Average concentration of 222Rn at the inlet (Bqm−3)

u:

Velocity vector (ms−1)

w:

Height of the opening (m)

x,y:

Cartesian coordinates

ρ:

Mixture density (Air-222Rn), Kg m−3

λ:

222Rn decay constant (s−1)

D:

Radon diffusivity in air (m−2 s−1)

βc :

Thermal expansion coefficient, K−1

g:

Gravitational acceleration (m−2 s−1)

References

  1. F Steinhausler Environ. Intern. 22 (Suppl. 1) S1111 (1996)

  2. Q Guo, J Sun and W Zhuo J. Nucl. Sci. Technol. 37 716 (2000)

    Article  Google Scholar 

  3. K K Dwivedi et al. Radiat. Meas. 33 7 (2001)

    Article  Google Scholar 

  4. P C Deka, H Sarma, S Sarkar, T D Goswami and B K Sarma Indian J. Phys. 83 1025 (2009)

  5. M S Kandari and R C Ramola Indian J. Phys. 83 1019 (2009)

    Article  ADS  Google Scholar 

  6. R S Saini, M Nain, R P Chauhan. N Kishore and S K Chakarvarti Indian J. Phys. 83 1197 (2009)

  7. F Bochicchio, F Forastiere, D Abeni and E Rapiti Radiat. Protect. Dosim. 78 33 (1998)

  8. R W Field et al. Am. J. Epidemiol. 151 1091 (2000)

    Article  Google Scholar 

  9. J Ma, H Yonehara, T Aoyama, M Doi, S Kobayashi and M Sakanoue Health Phys. 72 86 (1997)

    Article  Google Scholar 

  10. W Jacobi Health Phys. 22 441 (1972)

    Article  Google Scholar 

  11. J Postendorfer, A Wicke and A Schraub Health Phys. 34 465 (1978)

    Google Scholar 

  12. W Zhuo, T Iida, J Moriizumi, T Aoyagi and I Takahashi Radiat. Prot. Dosim. 93 357 (2001)

    Article  Google Scholar 

  13. V Urosevic, D Nikezic, and S Vulovic J. Environ. Radioact. 99 1829 (2008)

    Article  Google Scholar 

  14. B Zhao and J Wu J. Hazard. Mater. 147 439 (2007)

    Article  Google Scholar 

  15. D Xie, H Wang and K J Kearfott Atmos. Environ. 60 453 (2012)

    Article  ADS  Google Scholar 

  16. K Akbari, J Mahmoudi and M Ghanbari J. Environ. Radioact. 116 166 (2013)

    Article  Google Scholar 

  17. H Elharfi, M Naïmi, M Lamsaadi, A Raji and M Hasnaoui Int. Schol. Research Netw. 2012 16 (2012)

  18. J A Rabi and A A Mohamad Appl. Mathem. Modell. 30 1546 (2006)

    Article  Google Scholar 

  19. M Corcione, S Grignaffini and A Quintino Int. J. Heat Mass Transf. 81 811 (2015)

    Article  Google Scholar 

  20. M M Rahman, M A Alim, M A H Mamun, M K Chowdhury and A K M S Islam ARPN J. Eng. Appl. Sci. 2 2 (2007)

    Google Scholar 

  21. R S Kaluri and T Basak Int. J. Heat Mass Transf. 54 2578 (2011)

    Article  Google Scholar 

  22. B M Moharram, M N Suliman, N F Zahran, S E Shennawy and A R El Sayed Annals of Nucl. Energ. 45 138 (2012)

    Google Scholar 

  23. UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, effects and risk of ionizing radiation (New York: United Nations) (2000)

  24. L Oufni, M A Misdaq and M Amrane Radiat. Measur. 40 118 (2005)

    Article  Google Scholar 

  25. International Commission on Radiological Protection, Proceedings of the Third International Symposium on the System of Radiological Protection. Annals of the ICRP Vol 45 No. 1S (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Oufni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabi, R., Oufni, L. A theoretical investigation of the distribution of indoor radon concentrations. Indian J Phys 91, 471–479 (2017). https://doi.org/10.1007/s12648-016-0932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0932-8

Keywords

PACS Nos

Navigation