Skip to main content
Log in

The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1−x Al x As spherical quantum dot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The ground state, 1s, and the excited state, 2p, energies of a hydrogenic impurity in a GaAs–Ga1−x Al x As spherical quantum dot, are computed as a function of the donor positions. We study how the impurity self-polarization depends on the location of the impurity and the dielectric constant. The excited state anomalous impurity self-polarization in the quantum dot is found to be present in the absence of any external influence and strongly depends on the impurity position and the radius of the dot. Therefore, the excited state anomalous impurity self-polarization can give information about the impurity position in the system. Also, the variation of \( E_{b1s} \,and\,E_{b2p} \) with the dielectric constant can be utilized as a tool for finding out the correct dielectric constant of the dot material by measuring the 1s or 2p state binding energy for a fixed dot radius and a fixed impurity position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G Bastard Phys. Rev. B 24 4714 (1981)

    Article  ADS  Google Scholar 

  2. R L Greene and K K Bajaj Phys. Rev. B 31 4006 (1985)

    Article  ADS  Google Scholar 

  3. S Fraizzoli, F Bassani and R Buczko Phys. Rev. B 41 5096 (1990)

    Article  Google Scholar 

  4. S Baskoutas and A F Terzis Eur. Phys. J. B 69 237 (2009)

    Article  ADS  Google Scholar 

  5. S E Okan, I Erdogan and H Akbas Phys. E 21 91 (2004)

    Article  Google Scholar 

  6. H Akbas, C Dane, I Erdogan and O Akankan Phys. E 60 196 (2014)

    Article  Google Scholar 

  7. I Erdogan, O Akankan and H Akbas Phys. E 42 136 (2009)

    Article  Google Scholar 

  8. T Odagaki and H Kawai Phys. B 239 141 (1997)

    Article  ADS  Google Scholar 

  9. J W Brown and H N Spector J. Appl. Phys. 59 1179 (1986)

    Article  ADS  Google Scholar 

  10. S V Branis, G Li and K K Bajaj Phys. Rev. B 47 1316 (1993)

    Article  ADS  Google Scholar 

  11. A I Mese and S E Okan Phys. Stat. Sol. B 241 3525 (2004)

    Article  ADS  Google Scholar 

  12. M Ulas, E Cicek and S S Dalgic Phys. Stat. Sol. B 241 2968 (2004)

    Article  ADS  Google Scholar 

  13. M Ulas, I Erdogan, E Cicek and S S Dalgic Phys. E 25 515 (2005)

    Article  Google Scholar 

  14. I Erdogan, O Akankan and H Akbas Phys. E 33 83 (2006)

    Google Scholar 

  15. I Erdogan, O Akankan and H Akbas Phys. E 35 27 (2006)

    Google Scholar 

  16. O Akankan, I Erdogan and H Akbas Phys. E 35 217 (2006)

    Google Scholar 

  17. P V Villamil, C Cabra and N P Montenegro J. Phys. Condens. Matter 17 5049 (2005)

    ADS  Google Scholar 

  18. J L Zhu and X Chen Phys. Rev. B 50 4497 (1994)

    Article  ADS  Google Scholar 

  19. N F Johnson J. Phys. Condens. Matter 7 965 (1995)

    Article  ADS  Google Scholar 

  20. J L Zhu, J J Xiong and B L Gu Phys. Rev. B 41 6001 (1990)

    Article  Google Scholar 

  21. N P Montenegro and S T P Merchancano Phys. Rev. B 46 9780 (1992)

    Article  ADS  Google Scholar 

  22. H S Brandi, A Latge and L E Oliveira J. Appl. Phys. 92 4209 (2002)

    Article  ADS  Google Scholar 

  23. S Sucu, A I Mese and S E Okan Phys. E 40 2698 (2008)

    Google Scholar 

  24. A Özmen, Y Yakar, B Çakır and Ü Atav Opt. Commun. 282 3999 (2009)

    Article  ADS  Google Scholar 

  25. H Hassanabadi and A A Rajabi Phys. Lett. A 373 679 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. S Kang, Y C Yang, J He, F Q Xiong and N Xu Cent. Eur. J. Phys. 11 584 (2013)

    Google Scholar 

  27. S Wang, Y Kang and X LiLi Superlattices Microstruct. 76 221 (2014)

    Article  ADS  Google Scholar 

  28. D S Chuu, C M Hsiao and W N Mei Phys. Rev. B 46 3898 (1992)

    Article  Google Scholar 

  29. R S D Bella and K Navaneethakrishnan Solid State Commun. 130 773 (2004)

    Article  ADS  Google Scholar 

  30. E Sadeghi Phys. E 41 1319 (2009)

    Article  ADS  Google Scholar 

  31. A Sivakami and V Gayathri Superlattices Microstruct. 58 218 (2013)

    Article  ADS  Google Scholar 

  32. I Erdogan, O Akankan and H Akbas Superlattices Microstruct. 59 13 (2013)

    ADS  Google Scholar 

  33. P Bulut, I Erdogan and H Akbas Phys. E 63 299 (2014)

    Google Scholar 

  34. S Rajashabala and R Kannan Int. J. Nanosci. 11 1250020 (2012)

    Article  ADS  Google Scholar 

  35. P V Villamil and N P Montenegro J. Phys. Condens. Matter 11 9723 (1999)

    Article  ADS  Google Scholar 

  36. I F I Mikhail and I M M Ismail Superlattices Microstruct. 48 388 (2010)

    Article  ADS  Google Scholar 

  37. A Car and C Bose Indian J. Phys. 80 3 (2006)

    Google Scholar 

  38. M Tshipa Indian J. Phys. 86 807 (2012)

    Article  ADS  Google Scholar 

  39. J H Pan, L Z Liu and M Liu Chin. Phys. Lett. 28 086201 (2011)

    Google Scholar 

  40. A R Jeice, S G Jayam and K S J Wilson Chin. Phys. B 25 110303 (2015)

    Google Scholar 

  41. H Zhang, L X Zhai, X Wang, C Y Zhang and J J Liu Chin. Phys. B 20 037301 (2011)

    Google Scholar 

  42. S Kang, J Li and TY Shi J. Phys. B At. Mol. Opt. Phys. 39 3491 (2006)

    Article  ADS  Google Scholar 

  43. S H Patil, J. Phys. B: At. Mol. Opt. Phys. 34 1049 (2001)

    Article  ADS  Google Scholar 

  44. S Kang, Q Liu, H Y Meng and T Y Shi Phys. Lett. A 360 608 (2007)

    Article  ADS  Google Scholar 

  45. J L Zhu and X Chen J. Phys. Condens. Matter 6 L123 (1994)

    ADS  Google Scholar 

  46. R Dutt, A Mugherjee and Y P Varshni Phys. Lett. A 280 318 (2001)

    Article  ADS  Google Scholar 

  47. A I Morales, N Raigoza, E Reyes-Gomez, J M Osorio Guillen and C A Duque Superlattices Microstruct. 45 590 (2009)

    Article  ADS  Google Scholar 

  48. O Akankan Superlattices Microstruct. 55 45 (2013)

  49. S Rajashabala and K Navaneethakrishnan Superlattices Microstruct. 43 247 (2008)

    Article  ADS  Google Scholar 

  50. A John Peter and K Navaneethakrishnan Phys. E 40 2747 (2008)

    Article  ADS  Google Scholar 

  51. H D Karki, S Elagoz, R Amca and K Atasever Phys. E 42 1351 (2010)

    Google Scholar 

  52. N P Montenegro and S T P Merchancano J. Appl. Phys.74 7624 (1993)

    Article  ADS  Google Scholar 

  53. M G Barseghyan, A Hakimyfard, S Y Lopes, C A Duque and A A Kirakosyan Phys. E 42 1618 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mese.

Additional information

H. Akbas: retired at present.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mese, A.I., Cicek, E., Erdogan, I. et al. The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1−x Al x As spherical quantum dot. Indian J Phys 91, 263–268 (2017). https://doi.org/10.1007/s12648-016-0921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0921-y

Keywords

PACS Nos

Navigation