Skip to main content

Advertisement

Log in

Structural and electronic properties of BeH2 polymorphs: a study by density functional theory

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Structural and electronic properties of α, β, δ and ε polymorphs of BeH2 are studied. The effect of pressure on these properties is also seen. Investigations are carried out using the linear combination of atomic orbitals method. The lattice parameters, computed by coupling total energy calculations with the Murnaghan equation of state for the four crystals, are overall in agreement with the experimental data and other calculations. Enthalpy-pressure diagram indicates structural phase transitions α → β, α → δ, α → ε, β → δ, β → ε, and δ → ε to occur at 8.75, 12.75, 18.34, 39.53, 55.57 and 76.60 GPa respectively. Electronic band structure and density of states from PBE-GGA show that all polymorphs have wide bandgap. However, quantitative and qualitative agreement of the bandgap from hybrid calculations is observed with available GW data in α-BeH2. Therefore bandgaps from hybrid calculations are also proposed. In the three polymorphs the bandgap decreases slowly with pressure. Beyond 100 GPa, the β structure exhibits overlap of bands at the Γ point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L Schlapbach and A Züttel Nature 414 353 (2001)

    Article  ADS  Google Scholar 

  2. B Sakintuna, F L Darkrim and M Hirscher Int. J. Hydrogen Energy 32 1121 (2007)

    Article  Google Scholar 

  3. I P Jain, P Jain and A Jain J. Alloys Compd. 503 303 (2010)

    Article  Google Scholar 

  4. G Sandrock and G Thomas Appl. Phys. A 72 153 (2001)

    Article  ADS  Google Scholar 

  5. D A Papaconstantopoulos, B M Klein, E N Economou and L L Boyer Phys. Rev. B 17 141 (1978)

    Article  ADS  Google Scholar 

  6. C T Chan and S G Louie Phys. Rev. B 27 3325 (1987)

    Article  ADS  Google Scholar 

  7. T Barbee, A Garcia and M L Cohen Nature 340 369 (1989)

    Article  ADS  Google Scholar 

  8. P Cudazzo, G Profeta, A Sanna, A Floris, A Continenza, S Massidda and E K U Gross Phys. Rev. Lett. 100 257001 (2008)

    Article  ADS  Google Scholar 

  9. L M Harwood and C J Moody Experimental Organic Chemistry: Principles and Practice (Oxford: Blackwell Scientific) (1989)

  10. F Cotton and G Wilkinson Inorganic Chemistry, 4th ed. (New York: Interscience) (1980)

    Google Scholar 

  11. M A Hayward, M A Green, M J Rosseinsky and J Sloan J. Am. Chem. Soc. 121 8843 (1999)

    Article  Google Scholar 

  12. D A Armstrong, J Jamieson and P G. Perkins Theor. Chim. Acta 51 163 (1979)

    Article  Google Scholar 

  13. A Züttel, A Borgschulte and L Schlapbach Hydrogen as a future energy carrier (Wienheim: Wiley‐VCH GmbH & Co.) (2008)

  14. A W Overhauser Phys. Rev. B 35 411 (1987)

    Article  ADS  Google Scholar 

  15. G S Smith, Q C Johnson, D K Smith, D E Cox, R L Snyder, R S Zhou and A Zalkin Solid State Commun. 67 491 (1988)

    Article  ADS  Google Scholar 

  16. M J van Setten, G A de Wijs and G Brocks Phys. Rev. B 77 165115 (2008)

    Article  ADS  Google Scholar 

  17. P Vajeeston, P Ravindran, A Kjekshus and H Fjellvag Appl. Phys. Lett. 84 34 (2004)

    Article  ADS  Google Scholar 

  18. C Zhang, X J Chen, R Q Zhang and H Q Lin J Phys. Chem. C 114 14614 (2010)

    Article  Google Scholar 

  19. Z Wang, Y Yao, L Zhu, H Liu, T Iitaka, H Wang and Y Ma J. Chem. Phys. 140 124707 (2014)

    Article  ADS  Google Scholar 

  20. B T Wang, P Zhang, H L Shi, B Sun and W D Li Eur. Phys. J. B 74 303 (2010)

    Article  ADS  Google Scholar 

  21. S Yu, Q Zeng, A R Oganov, C Hu, G Frapper and L Zhang AIP Adv. 4 107118 (2014)

    Article  ADS  Google Scholar 

  22. P F Bernath, A Shayesteh, K Tereszchuk and R Colin Science 297 1323 (2002)

    Article  ADS  Google Scholar 

  23. A Shayesteh, K Tereszchuk, P F Bernath and R Colin J. Chem. Phys. 118 3622 (2003)

    Article  ADS  Google Scholar 

  24. M Aharta, J L Yarger, K M Lantzky, S Nakano, H Mao and R J Hemley J. Chem. Phys. 124 14502 (2006)

    Article  ADS  Google Scholar 

  25. R Dovesi et al. CRYSTAL06 User’s Manual (University of Torino, Italy) (2006)

    Google Scholar 

  26. R Dovesi, B Civalleri, R Orlando, C Roetti and V R Saunders Rev. Comput. Chem. 21 1 (2005)

    Google Scholar 

  27. R A Evarestov Quantum Chemistry of Solids: The LCAO First Principles Treatment of Crystals Springer Series in Solid State Sciences Vol 153 (Berlin: Springer) (2007)

  28. A Lichanot, M Chaillet, C Larrieu, R Dovesi and C Pisani Chem. Phys. 164 383 (1992)

    Article  ADS  Google Scholar 

  29. R Dovesi, E Ermondi, E Ferrero, C Pisani and C Roetti Phys. Rev. B 29 3591(1983)

    Article  ADS  Google Scholar 

  30. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  31. F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  32. A D Becke J. Chem. Phys. 140 18A301 (2014)

    Article  Google Scholar 

  33. F Füchs, J Furthmüller, F Bechsted, M Shishkin and G Kresse Phys. Rev. B 76 115109 (2007)

    Article  ADS  Google Scholar 

  34. K B Joshi, U Paliwal and B K Sharma Phys. Status Solidi B 248 1248 (2011)

    Article  ADS  Google Scholar 

  35. F Bechstedt, F Füchs and G Kresse Phys. Status Solidi B 246 1877 (2009)

    Article  ADS  Google Scholar 

  36. F Tran, R Laskowski, P Blaha and K Schwarz Phys. Rev. B 75 115131 (2007)

    Article  ADS  Google Scholar 

  37. R S Chellappa, D Chandra, S A Gramsch, R J Hemley, J F Lin and Y Song J. Phys. Chem. B 110 11088 (2006)

    Article  Google Scholar 

  38. S Limpijumnong and W R L Lambrecht Phys. Rev. B 63 104103 (2001)

    Article  ADS  Google Scholar 

  39. S Lebegue, C M Araujo, O Eriksson, B Arnaud, M Alouani and R Ahuja J. Phys. Condens. Matter. 19 036223 (2007)

    Article  ADS  Google Scholar 

  40. M Heinemann, B Eifert and C Heiliger Phys. Rev. B 87 115111 (2013)

    Article  ADS  Google Scholar 

  41. O Pulci, F Bechstedt, G Onida, R Del Sole and L Reining Phys. Rev. B 60 16758 (1999)

    Article  ADS  Google Scholar 

  42. L J Sham and M Schlüter Phys. Rev. Lett. 51 1888 (1983)

    Article  ADS  Google Scholar 

  43. J P Perdew and A Zunger Phys. Rev. B 23 5048 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Y. K. Vijay and B. K. Sharma for granting support to use CRYSTAL program. D.K.T. is grateful to the Director, Technical education Rajasthan, Jodhpur and the Principal, Govt. Polytechnic College, Banswara to grant permission to do Doctoral work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Galav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, D.K., Galav, K.L., Jaaffrey, S.N.A. et al. Structural and electronic properties of BeH2 polymorphs: a study by density functional theory. Indian J Phys 90, 1257–1263 (2016). https://doi.org/10.1007/s12648-016-0867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0867-0

Keywords

PACS Nos.

Navigation