Skip to main content
Log in

Raman spectroscopy and surface wetting of self-assembled monolayer (SAM) of 1-octanethiol and 1,10-decanedithiol

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report the preparation of mixed self-assembled monolayer of 1-octanethiol and 1,10-decanedithiol on Au thin film with preferential Au(111) surface and their characterization using Raman spectroscopy of cysteine adsorbed on mixed self-assembled monolayer mediated isolated Ag nanoparticles. The self-assembled monolayer characterization has been also performed through water contact angle measurement. A significant enhancement in water contact angle from 24° to 103° has been observed on Au surface after self-assembled monolayer formation, primarily due to the hydrophobic nature of the methyl group at the terminal end of the 1-octanethiol, which confirms regular self-assembled monolayer formation. Availability of –SH group from 1,10-decanedithiol on the self-assembled monolayer surface and so, the formation of mixed self-assembled monolayer has been ascertained by immobilization of Ag nanoparticles probed via scanning electron microscopy and Raman spectroscopy of cysteine adsorbed on Ag nanoparticles. Raman spectrum of cysteine on self-assembled monolayer mediated Ag nanoparticles in the fingerprint region of 500–1800 cm−1 shows appreciable increase in the band intensity due to surface enhanced Raman scattering as compared to the band intensity on bare Au surface. These results clearly indicate that the mixed self-assembled monolayer with adequate proportion of component molecules can be utilized as a suitable and inexpensive host for surface enhanced Raman scattering substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B J Hong, V Sunkara and J W Park Nucleic Acids Res. 33 e106 (2005)

    Article  Google Scholar 

  2. S Löfås and B Johnsson J. Chem. Soc. Chem. Commun. (21) 1526 (1990)

  3. M Ulbricht, M Riedel and U Marx J. Membr. Sci. 120 239 (1996)

    Article  Google Scholar 

  4. D A Puleo, R A Kissling and M S Sheu Biomaterials 23 2079 (2002)

    Article  Google Scholar 

  5. J M Goddard and J H Hotchkiss Prog. Polym. Sci. 32 698 (2007)

    Article  Google Scholar 

  6. A Deepu, V V R Sai and S Mukherji J. Mater. Sci. Mater. Med. 20 25 (2009)

    Article  Google Scholar 

  7. V Dugas, A Elaissari and Y Chevalier Recognition Receptors in Biosensors (ed.) M Zourob (New York: Springer) p 47 (2010)

    Chapter  Google Scholar 

  8. C Taitt, L Shriver-Lake, G Anderson and F Ligler Biomedical Nanotechnology 726 (ed.) S J Hurst (New York: Humana Press) p 77 (2011)

    Chapter  Google Scholar 

  9. F Schreiber Prog. Surf. Sci. 65 151 (2000)

    Article  ADS  Google Scholar 

  10. S Varatharajan, S Berchmans and V Yegnaraman J. Chem. Sci. 121 665 (2009)

    Article  Google Scholar 

  11. E Klein, P Kerth and L Lebeau Biomaterials 29 204 (2008)

    Article  Google Scholar 

  12. M Mrksich and G M Whitesides Annu. Rev. Biophys. Biomol. Struct. 25 55 (1996)

    Article  Google Scholar 

  13. P Wagner, M Hegner, P Kernen, F Zaugg and G Semenza Biophys. J. 70 2052 (1996)

    Article  ADS  Google Scholar 

  14. L Liu, S Song and P Zhang Surf. Interface Anal. 45 993 (2013)

    Article  Google Scholar 

  15. A Ulman Chem. Rev. 96 1533 (1996)

    Article  Google Scholar 

  16. C Vericat, M E Vela, G Benitez, P Carro and R C Salvarezza Chem. Soc. Rev. 39 1805 (2010)

    Article  Google Scholar 

  17. D J Kim and K K Koo J. Ind. Eng. Chem. 10 920 (2004)

    Google Scholar 

  18. L Li, S Chen and S Jiang Langmuir 19 3266 (2003)

    Article  Google Scholar 

  19. S Chen, L Li, C L Boozer and S Jiang J. Phys. Chem. B 105 2975 (2001)

    Article  Google Scholar 

  20. S Chen, L Li, C L Boozer and S Jiang Langmuir 16 9287 (2000)

    Article  Google Scholar 

  21. A D Taylor, Q Yu, S Chen, J Homola and S Jiang Sens. Actuators B Chem. 107 202 (2005)

    Article  Google Scholar 

  22. A Taninaka, O Takeuchi and H Shigekawa Int. J. Mol. Sci. 11 2134 (2010)

    Article  Google Scholar 

  23. D I Gittins, D Bethell, D J Schiffrin and R J Nichols Nature 408 67 (2000)

    Article  ADS  Google Scholar 

  24. W Deng, L Yang, D Fujita, H Nejoh and C Bai Appl. Phys. A 71 639 (2000)

    Article  ADS  Google Scholar 

  25. S R Wasserman, G M Whitesides, I M Tidswell, B M Ocko, P S Pershan and J D Axe J. Am. Chem. Soc. 111 5852 (1989)

    Article  Google Scholar 

  26. J F Kang, R Jordan and A Ulman Langmuir 14 3983 (1998)

    Article  Google Scholar 

  27. M Venkataramanan, G Skanth, K Bandyopadhyay, K Vijayamohanan and T Pradeep J. Colloid Interface Sci. 212 553 (1999)

    Article  Google Scholar 

  28. B Bhushan and H Liu Phys. Rev. B 63 245412 (2001)

    Article  ADS  Google Scholar 

  29. J C Love et al. J. Am. Chem. Soc. 125 2597 (2003)

    Article  Google Scholar 

  30. H Kang et al. Ultramicroscopy 109 1011 (2009)

    Article  Google Scholar 

  31. J Liu et al. J. Electron. Spectrosc. 172 120 (2009)

    Article  Google Scholar 

  32. N Y Cui, C Liu and W Yang Surf. Interface Anal. 43 1082 (2011)

    Article  Google Scholar 

  33. C Vericat, M E Vela, G A Benitez, J A M Gago, X Torrelles and R C Salvarezza J. Phys. Condens. Matter 18 R867 (2006)

    Article  ADS  Google Scholar 

  34. D J Fuchs and P S Weiss Nanotechnology 18 044021 (2007)

    Article  ADS  Google Scholar 

  35. A F Stalder, G Kulik, D Sage, L Barbieri and P Hoffmann Colloid Surf. A 286 92 (2006)

    Article  Google Scholar 

  36. A Bankapur, E Zachariah, S Chidangil, M Valiathan and D Mathur PLoS One 5 e10427 (2010)

    Article  ADS  Google Scholar 

  37. G E Poirier and E D Pylant Science 272 1145 (1996)

    Article  ADS  Google Scholar 

  38. S Chen, Y Liu and G Wu Nanotechnology 16 2360 (2005)

    Article  ADS  Google Scholar 

  39. S Kundu J. Mater. Chem. C 1 831 (2013)

    Article  Google Scholar 

  40. K Häupl, M Lang and P Wissmann Surf. Interface Anal. 9 27 (1986)

    Article  Google Scholar 

  41. M L White J. Phys. Chem. 68 3083 (1964)

    Article  Google Scholar 

  42. T Smith J. Colloid Interface Sci. 75 51 (1980)

    Article  Google Scholar 

  43. C D Bain, E B Troughton, Y T Tao, J Evall, G M Whitesides and R G Nuzzo J. Am. Chem. Soc. 111 321 (1989)

    Article  Google Scholar 

  44. L Chai and J Klein Langmuir 23 7777 (2007)

    Article  Google Scholar 

  45. C K Dixit J. Biosens. Bioelectron. 5 2 (2014)

    Google Scholar 

  46. M Lestelius, I Engquist, P Tengvall, M K Chaudhury and B Liedberg Colloids Surf. B 15 57 (1999)

    Article  Google Scholar 

  47. M E Callow, J A Callow, L K Ista, S E Coleman, A C Nolasco and G P López Appl. Environ. Microbiol. 66 3249 (2000)

    Article  Google Scholar 

  48. G V P Kumar J. Nanophotonics 6 064503 (2012)

    Article  Google Scholar 

  49. P L Stiles, J A Dieringer, N C Shah and R P Van Duyne Annu. Rev. Anal. Chem. 1 601 (2008)

    Article  Google Scholar 

  50. S W Joo, S W Han and K Kim Langmuir 16 5391 (2000)

    Article  Google Scholar 

  51. E Podstawka, Y Ozaki and L M Proniewicz Appl. Spectrosc. 59 1516 (2005)

    Article  ADS  Google Scholar 

  52. J A Centeno Ions Métalliques en Biologie Et en Médecine 6 (Montrouge: John Libbey Eurotext) (2000)

    Google Scholar 

  53. Z Weng et al. Anal. Chim. Acta 803 128 (2013)

    Article  ADS  Google Scholar 

  54. M Graff and J Bukowska J. Phys. Chem. B 109 9567 (2005)

    Article  Google Scholar 

  55. E López-Tobar, B Hernández, M Ghomi and S Sanchez-Cortes J. Phys. Chem. C 117 1531 (2013)

    Article  Google Scholar 

  56. C Jing and Y Fang Chem. Phys. 332 27 (2007)

    Article  ADS  Google Scholar 

  57. G D Fleming et al. J. Raman Spectrosc. 40 632 (2009)

    Article  ADS  Google Scholar 

  58. E Podstawka, Y Ozaki and L M Proniewicz Appl. Spectrosc. 58 570 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Board of Research in Nuclear Science (BRNS) under the project Grant No. 2012/34/69/BRNS/2971. J. Lukose acknowledges Manipal University for the MU fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukose, J., Kulal, V., Bankapur, A. et al. Raman spectroscopy and surface wetting of self-assembled monolayer (SAM) of 1-octanethiol and 1,10-decanedithiol. Indian J Phys 90, 943–949 (2016). https://doi.org/10.1007/s12648-015-0827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0827-0

Keywords

PACS No.

Navigation