Skip to main content
Log in

Optical conductivity of AA-stacked bilayer graphene in presence of bias voltage beyond Dirac approximation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have addressed the dynamical conductivity of AA-stacked bilayer graphene as a function of photon frequency in the presence of a finite bias voltage at finite temperature. Using linear response theory and Green’s function approach, the frequency dependence of optical conductivity has been obtained in the context of tight binding model Hamiltonian. Our results show a finite Drude absorption at low frequency for the case of charge neutrality. However, Drude weight gets remarkable amount at unbiased case. We have studied the behavior of optical spectra as a function of chemical potential for different values of bias voltages. Dynamical conductivity is found to be monotonically decreasing with chemical potential due to increased scattering among electrons at higher chemical potential. Furthermore the dependence of optical conductivity on the voltage bias and temperature has been investigated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K S Novoselov,etal Science 306 666 (2004)

    Article  ADS  Google Scholar 

  2. K S Novoselov, etal Proc. Natl. Acad. Sci. USA 102 10541 (2005)

    Article  Google Scholar 

  3. Y Zhang, Y -W Tan, H L Stormer, and P Kim Nature 438 201 (2005)

    Article  ADS  Google Scholar 

  4. I Crassee, etal Nat. Phys. 7 48 (2011)

    Article  ADS  Google Scholar 

  5. A H Castro Neto, F Guinea, N M R Peres, K S Novoselov and A K Geim Rev. Mod. Phys. 81 109 (2009)

    Article  ADS  Google Scholar 

  6. J K Lee, S C Lee, J P Ahn, S C Kim, J B Wilson and P John J. Chem. Phys. 129 234709 (2008)

    Article  ADS  Google Scholar 

  7. Ed McCann and V I Falko Phys. Rev. Lett. 96 086805 (2006)

    Article  ADS  Google Scholar 

  8. A K Geim and K S Novoselov Nat. Mater. 6 183 (2007)

    Article  ADS  Google Scholar 

  9. E McCann Phys. Rev. B 74 161403 (2006)

    Article  ADS  Google Scholar 

  10. J B Oostinga, H B Heersche, X Liu, A F Morpurgo and L M K Vandersypen Nat. Mater. 10.1,38 nmat 2082 (2007)

    Google Scholar 

  11. E V Castro, etal Phys. Rev. Lett 99 216802 (2007)

    Article  ADS  Google Scholar 

  12. H Min, B Sahu, S K Banerjee and A H MacDonald Phys. Rev. B 75 155115(2007)

    Article  ADS  Google Scholar 

  13. J J Milton Pereira, P Vasilopoulos and F M Peeters Nano Lett. 7 946 (2007)

    Article  ADS  Google Scholar 

  14. J Nilsson, A H Castro Neto, F Guinea and N M R Peres Phys. Rev. B 76 165416 (2007)

    Article  ADS  Google Scholar 

  15. T Ando, Y Zhang and H Suzuura J. Phys. Soc. Jpn. 71 1318 (2002)

    Article  ADS  Google Scholar 

  16. R R Nair, etal Science 320 1308 (2008)

    Article  ADS  Google Scholar 

  17. D S L Abergal and V I Falko Phys. Rev. B 77 155409 (2008)

    Article  Google Scholar 

  18. L M Zhang, Z Q Li, D N Basov, M M Fogler, Z Hao and M C Martin Phys. Rev. B 78 235408 (2008)

    Article  ADS  Google Scholar 

  19. Y Xu, X Li and J Dong Nanotechnology 21 065711 (2010)

    Article  ADS  Google Scholar 

  20. M L Sadowski, G Martinez, M Potemski, C Berger and W Ade Heer Phys. Rev. Lett. 97 266405(2006)

    Article  ADS  Google Scholar 

  21. Z Q Li, etal Phys. Rev. B 74 195404 (2006)

    Article  ADS  Google Scholar 

  22. Z Jiang, etal Phys. Rev. Lett 98 197403 (2007)

    Article  ADS  Google Scholar 

  23. L A Falkovaky and A A Varlamov Eur. Phys. J. B 56 281 (2007)

    Article  ADS  Google Scholar 

  24. V P Gusynin, S G Sharapov and J P Carbotte J. Phys. Condens. Matter. 19 026222 (2007)

    ADS  Google Scholar 

  25. V P Gusynin, S G Sharapov and J P Carbotte Phys. Rev. B 75 165407 (2007)

    Article  ADS  Google Scholar 

  26. C J Tabert and E J Nicol Phys. Rev. B 86 075439 (2012)

    Article  ADS  Google Scholar 

  27. E J Nicol and J P Carbotte Phys. Rev. B 77 155409 (2008)

    Article  ADS  Google Scholar 

  28. I Lobato and B Partoens Phys. Rev. B 83 165429 (2011)

    Article  ADS  Google Scholar 

  29. G D Mahan Many Particle Physics (NewYork: Plenumn Press) (ed.) M Zagoskin 115 (1993)

  30. A L Fetter and J D Walecka Quantum Theory of Many Particle Systems (NewYork:MacGraw-Hill) (ed.) F K Richtmeyer 104 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Yarmohammadi, M. Optical conductivity of AA-stacked bilayer graphene in presence of bias voltage beyond Dirac approximation. Indian J Phys 90, 811–817 (2016). https://doi.org/10.1007/s12648-015-0821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0821-6

Keywords

PACS Nos.

Navigation