Skip to main content
Log in

Asymptotic cross section and scaling law: positronium formation in Rydberg states in positron–hydrogen collisions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Positronium formation in Rydberg states from the ground state of the hydrogen atom by positron impact has been studied within the framework of a distorted wave theory which includes static dipole polarization potential. The distorted wave scattering amplitude has been obtained in a closed form. A detailed investigation has been made on the differential and total cross sections in the energy range 25–300 eV of incident positron. It has been found that asymptotic cross sections for the positronium formation into different angular momentum states obey a simple law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J P Marler et al. Phys. Plasmas 16 057101 (2009)

    Article  ADS  Google Scholar 

  2. T C Naginey, B B Pollock, E W Stacy, H R J Walters and C T Whelan Phys. Rev. A 89 012708 (2014)

    Article  ADS  Google Scholar 

  3. T Pohl, T Pattard and J M Rost Phys. Rev. A 68 010703 (2003)

    Article  ADS  Google Scholar 

  4. M Leventhal Astrophys. J. 183 L147 (1973)

    Article  ADS  Google Scholar 

  5. C J Crannell, R Ramaty and C Werntz 14th International Cosmic Ray Conference (West Germany, Munich:Max-Planck-Institut fur extraterrestrische Physik) 5 1656 (1975)

  6. R W Bussard, R Ramaty and R J Drachman Astrophys. J. 228 928 (1979)

    Article  ADS  Google Scholar 

  7. F W Stecker Astrophys. Space Sci. 3 579 (1969)

    Article  ADS  Google Scholar 

  8. N N Mondal Int. J. Astron. Astrophys. 4 620 (2014)

    Article  Google Scholar 

  9. N Guessoum, R Ramaty and R E Lingenfelter Astrophys. J. 378 170 (1991)

    Article  ADS  Google Scholar 

  10. R Ferragut et al. J. Phys Conf. Ser. 225 012007 (2010)

    Article  ADS  Google Scholar 

  11. S Shindo and A Ishii Phys. Rev. B 35 8360 (1987)

    Article  ADS  Google Scholar 

  12. A Ishii Phys. Rev. B 36 1853 (1987)

    Article  ADS  Google Scholar 

  13. C Consolati, D Franco and D Trezzi Mater. Sci. Forum 733 306 (2013)

    Article  Google Scholar 

  14. T Hirade Mater. Sci. Forum 607 232 (2009)

    Article  Google Scholar 

  15. T Goworek, B Jasinska, J Wawryszczuk and K Ciesielski J. Chem. Soc. Faraday Trans. 93 1573 (1997)

    Article  Google Scholar 

  16. M Doser et al. (AEGIS Collaboration) Class. Quantum Grav. 29 184009 (2012)

  17. G Consolati et al.Chem. Soc. Rev. 42 3821 (2013)

    Article  Google Scholar 

  18. E R Carlson Bull. Am. Phys. Soc. 18 1512 (1973)

  19. S L Verghese, E S Ensberg, V M Hughes, I Lindgren Phys. Lett. A 49 415 (1974)

    Article  ADS  Google Scholar 

  20. K F Canter, A P Mills and S Berko Phys. Rev. Lett. 33 7 (1974); 34 177 (1975)

  21. A P Mills, S Berko and K F Canter Phys. Rev. Lett 34 1541 (1975)

    Article  ADS  Google Scholar 

  22. S Zhou, H Li, W E Kauppila, C K Kwan and T S Stein Phys. Rev. A 55 361 (1997)

    Article  ADS  Google Scholar 

  23. M Weber, A Hofmann, W Raith, W Sperber, F Jacobsen and K G Lynn Hyperf. Interact. 89 221 (1994)

    Article  ADS  Google Scholar 

  24. P Mandal, S Guha and N C Sil J. Phys. B 12 2913 (1979)

    Article  ADS  Google Scholar 

  25. K Ratnavelu and K K Rajagopal J. Phys. B, 32 L381 (1999)

    Article  ADS  Google Scholar 

  26. S Tripathi, C Sinha and N C Sil Phys. Rev. A 39 2924 (1989)

    Article  Google Scholar 

  27. P Mandal and S Guha J. Phys. B 12 1603 (1979)

    Article  ADS  Google Scholar 

  28. R Shakeshaft and J M Wadehra Phys. Rev. A 22 968 (1980)

    Article  ADS  Google Scholar 

  29. N C Sil, B C Saha, H P Saha and P Mandal Phys. Rev. A 19 655 (1979)

    Article  ADS  Google Scholar 

  30. S N Nahar Phys. Rev. A 40 6231 (1989)

    Article  ADS  Google Scholar 

  31. A A Kernoghan, D J R Robinson, M T McAlinden and H R J Walters J. Phys. B 29 2089 (1996)

    Article  ADS  Google Scholar 

  32. A A Kernoghan, M T McAlinden and H R J Walters J. Phys. B 28 1079 (1995)

    Article  ADS  Google Scholar 

  33. J D Jackson and H Shiff Phys. Rev. 89 359 (1953)

    Article  ADS  Google Scholar 

  34. D Basu, G Banerji and A S Ghosh Phys. Rev. A 13 1381 (1976)

    Article  ADS  Google Scholar 

  35. A S Ghosh, N C Sil and P Mandal Phys. Rep. 87 313 (1982)

    Article  ADS  Google Scholar 

  36. R N Hewitt, C J Noble and B H Bransden J. Phys. B 23 4185 (1990)

    Article  ADS  Google Scholar 

  37. P Khan, P S Mazumdar and A S Ghosh Phys. Rev. A 31 1405 (1985)

    Article  ADS  Google Scholar 

  38. C R Mandal, M Mandal and S C Mukherjee Phys. Rev. A 44 2968 (1991)

    Article  ADS  Google Scholar 

  39. M Mukherjee, M Basu and A S Ghosh J. Phys. B 23 757 (1990)

    Article  ADS  Google Scholar 

  40. A S Kadyrov and I Bray Phys Rev A 66 012710 (2002)

    Article  ADS  Google Scholar 

  41. A S Kadyrov and I Bray J Phys B 33 L635 (2000)

    Article  ADS  Google Scholar 

  42. B C Saha and P K Roy Phys. Rev. A 30 2980 (1984)

    Article  ADS  Google Scholar 

  43. A Ghoshal and P Mandal Eur. Phys. J. D 46 251 (2008)

    Article  ADS  Google Scholar 

  44. S Nayek and A Ghoshal Phys. Plasmas 19 113501 (2012)

    Article  ADS  Google Scholar 

  45. A Ghoshal and P Mandal J. Phys. B 41 175203 (2008)

    Article  ADS  Google Scholar 

  46. A Ghoshal and P Mandal Phys. Rev. A 72 032714 (2005)

    Article  ADS  Google Scholar 

  47. R H Bassel and E Gerjuoy Phys. Rev. 117 749 (1960)

    Article  ADS  Google Scholar 

  48. J M Wadehra Can. J. Phys. 60 601 (1982)

    Article  ADS  Google Scholar 

  49. L Jiao, Y Wang and Y Zhou Phys. Rev. A 84 052711 (2011)

    Article  ADS  Google Scholar 

  50. P Rej and A Ghoshal J. Phys. B 47 015204 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

P. Rej sincerely acknowledges the financial support received from University Grants Commission, New Delhi through Junior Research Fellowship. This work is partially supported by UGC Major Research Project (MRP-MAJOR-MATH-2013-8458; F. No. 43-415/2014(SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghoshal.

Appendix

Appendix

Evaluation of the \(1s \rightarrow nlm\) capture amplitude \(g_{B}(\vec {k}_f, \vec {k}_i).\)

The wave function of Ps atom in nlm state is given by

$$ \begin{aligned} \eta _{{nlm}} (\vec{r}_{1} ) & = R_{{nl}} (r_{1} )Y_{{lm}} (\theta _{1} ,\phi _{1} ) \\ & = \left\{ { - \left[ {\left( {\frac{2}{{na_{0} }}} \right)^{3} \frac{{(n - l - 1)!}}{{2n[(n + l)!]^{3} }}} \right]^{{1/2}} e^{{ - \frac{{r_{1} }}{{na_{0} }}}} \left( {\frac{2}{{na_{0} }}r_{1} } \right)^{l} L_{{n + l}}^{{2l + 1}} \left( {\frac{2}{{na_{0} }}r_{1} } \right)} \right\}Y_{{lm}} (\theta _{1} ,\phi _{1} ), \\ \end{aligned} $$
(7)

where \(Y_{lm}\) denote the spherical harmonics, and \(L_{n+l}^{2l+1}\) denote the associated Laguerre polynomial of degree \((n+l)\) and order \((2l+1).\)

\(1s \rightarrow nlm\) capture amplitude \(g_{B}(\vec {k}_f, \vec {k}_i)\) is given by

$$ \begin{aligned} g_{B} (\vec{k}_{f} ,\vec{k}_{i} ) & = \left( { - \frac{{m_{f} }}{{2\pi }}} \right)\left\langle {\Phi _{f} |V_{f} |\Phi _{i} } \right\rangle \\ & = \left( { - \frac{{m_{f} }}{{2\pi }}} \right)\int {e^{{i[\vec{A}.\vec{r}_{2} - \vec{B}.\vec{r}_{1} ]}} } \eta _{{nlm}}^{*} (\vec{r}_{1} )\left[ {\frac{1}{{R_{{12}} }} - \frac{1}{{r_{2} }}} \right]\phi _{{1s}} (\vec{r}_{2} )d\vec{r}_{1} d\vec{r}_{2} \\ & = \left( { - \frac{{m_{f} }}{{2\pi }}} \right)\left[ {I_{1} - I_{2} } \right], \\ \end{aligned} $$
(8)

where

$$ \vec{A} = \frac{{m_{p} }}{{m_{p} + 1}}\vec{k}_{i} - \vec{k}_{f} ,\quad \vec{B} = \vec{k}_{i} - \frac{{\vec{k}_{f} }}{2} $$
$$ I_{1} = \int {e^{{i[\vec{A} \cdot \vec{r}_{2} - \vec{B} \cdot \vec{r}_{1} ]}} } \eta _{{nlm}}^{*} (\vec{r}_{1} )\frac{1}{{R_{{12}} }}\phi _{{1s}} (\vec{r}_{2} )d\vec{r}_{1} d\vec{r}_{2} , $$
(9)
$$ I_{2} = \int {e^{{i[\vec{A} \cdot \vec{r}_{2} - \vec{B} \cdot \vec{r}_{1} ]}} } \eta _{{nlm}}^{*} (\vec{r}_{1} )\frac{1}{{r_{2} }}\phi _{{1s}} (\vec{r}_{2} )d\vec{r}_{1} d\vec{r}_{2} $$
(10)

We first consider the integral \(I_1\) which contains positron–proton interaction and hence rather difficult to evaluate. Taking Fourier transforms of the function \(exp(-\lambda r)/r\) and then utilizing the \(\delta -\)function properties \(\vec {r}_2\) integration can be carried our easily and we obtain

$$I_1 = -2\left( \frac{\gamma _{1}}{\pi } \right) ^{3/2} \frac{\partial }{\partial \gamma _{1}} \int \frac{e^{i(\vec {s}-\vec {B}).\vec {r}_1}}{(|\vec {A}-\vec {s}|^2 + \gamma _1^2)s^2}\eta _{nlm}^*(\vec {r}_1)~ d \vec {r}_1 d \vec {s}.$$
(11)

where \(\gamma _1 = 1/a_0.\) Using integral representation of Feynman

$$\frac{1}{ab} = \int \limits _{0}^{1} \frac{dx}{[ax+b(1-x)]^2}$$

and setting \(\lambda ^2 = A^2x(1-x) + \gamma _{1}^2 x \) we obtain

$$ I_{1} = - 2\left( {\frac{{\gamma _{1} }}{\pi }} \right)^{{3/2}} \frac{\partial }{{\partial \gamma _{1} }}\int\limits_{0}^{1} d x~e^{{i(x\vec{A} - \vec{B}) \cdot \vec{r}_{1} }} \eta _{{nlm}}^{*} (\vec{r}_{1} )~d\vec{r}_{1} \int {\frac{{e^{{i(\vec{s} - x\vec{A}) \cdot \vec{r}_{1} }} }}{{[|s - x\vec{A}|^{2} + \lambda ^{2} ]^{2} }}} ~d\vec{s} $$

or,

$$\begin{aligned} I_{1} &= - 2\pi ^{2} \left( {\frac{{\gamma _{1} }}{\pi }} \right)^{{3/2}} \frac{\partial }{{\partial \gamma _{1} }}\int\limits_{0}^{1} {\frac{{e^{{i\vec{p} \cdot \vec{r}_{1} - \lambda r_{1} }} }}{\lambda }} \eta _{{nlm}}^{*} (\vec{r}_{1} )~d\vec{r}_{1} dx,\\ \vec{p} &= x\vec{A} - \vec{B} \end{aligned}$$

or,

$$ I_{1} = - 2\pi ^{2} \left( {\frac{{\gamma _{1} }}{\pi }} \right)^{{3/2}} \frac{\partial }{{\partial \lambda }}\int\limits_{0}^{1} {\frac{F}{\lambda }} \left( {\frac{{\partial \lambda }}{{\partial \gamma _{1} }}} \right)dx $$

or,

$$ I_{1} = {\text{ }}A_{1} \left[ {\int\limits_{0}^{1} {\frac{x}{{\lambda ^{2} }}} \frac{\partial }{{\partial \lambda }}(F)~dx - \int\limits_{0}^{1} {\frac{{xF}}{{\lambda ^{3} }}} ~dx} \right], $$
(12)

where

$$ A_{1} = - 2\pi ^{2} \gamma _{1} \left( {\frac{{\gamma _{1} }}{\pi }} \right)^{{3/2}} , $$
$$ F = \int {e^{{i\vec{p} \cdot \vec{r}_{1} - \lambda r_{1} }} } \eta _{{nlm}}^{*} (\vec{r}_{1} )~d\vec{r}_{1} . $$
(13)

Using the expansion formula of plane wave in terms of spherical Bessel’s function \(J_L,\) such as \(exp(i\vec {p}.\vec {r}_1) = 4\pi \sum _{L,M} i^L j_L(pr_1)Y_{LM}^*(\hat{p}) Y_{LM}(\hat{r}_1),\) and then utilizing the orthogonal property of spherical harmonics \(Y_{LM}\) we obtain

$$F = 4\pi i^lY_{lm}^*(\hat{p})N_{lm}\int \limits _{0}^{\infty } j_l(pr_1) e^{-ar_1} L_{n+l}^{2l+1}(2\gamma _{n}r_1)r_1^{l+2}~dr_1, \quad a = \lambda + \gamma _{n} \;\mathrm{and}\;\gamma _{n} =\frac{1}{n a_0} .$$
(14)

Now using the expansion formula of the associated Laguerre polynomial and a typical integral involving spherical Bessel function, such as

$$ L_{{n + l}}^{{2l + 1}} (x) = \sum\limits_{{i = 0}}^{{n - l - 1}} {( - 1)^{{i + 1}} } \frac{{[(n + l)!]^{2} }}{{(n - l - 1 - i)!(2l + 1 + k)!}}\frac{{x^{i} }}{{i!}} $$

and

$$ \int\limits_{0}^{\infty } {e^{{ - ax}} } j_{l} (bx)x^{{l + 1}} dx = \frac{{(2b)^{l} l!}}{{(a^{2} + b^{2} )^{{l + 1}} }},~~({\text{Re}}(a) > |{\text{Im}}(b)|), $$
(15)

we finally obtain

$$F = C Y_{lm}^*(\hat{p}) \sum _{k=0}^{n-l-1} g(k)~D(p,a,l+1,k+1),$$
(16)

where

$$\begin{aligned}& D(x,y,l,m) = \frac{{d^{m} }}{{dy^{m} }}\left[ {\frac{1}{{(x^{2} + y^{2} )^{l} }}} \right]~\;{\text{and}}\\ & g(k) = \frac{{(2\gamma _{n} )^{k} }}{{(n - l - 1 - k)!(2l + 1 + k)!k!}}. \end{aligned}$$

Substituting (Eq. (16)) into (Eq. (12)) we obtain

$$I_1 = A_1C \sum _{k=0}^{n-l-1} g(k) \int \limits _{0}^{1} \frac{xY_{lm}^*(\hat{p})}{\lambda ^2} \left[ \frac{D(p,a,l+1,k+1)}{\lambda } - D(p,a,l+1,k+2) \right] (2p)^l~dx .$$
(17)

In the similar fashion the integral \(I_2\) can be evaluated. The one-dimensional integration over [0, 1] appearing in integral (Eq. (17)) has been evaluated numerically by employing Gauss–Legendre quadrature formula. Note that the integral (Eq. (17)) has a fictitious singularity , which has been removed by taking a transformation of the form \(x=z^2.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rej, P., Ghoshal, A. Asymptotic cross section and scaling law: positronium formation in Rydberg states in positron–hydrogen collisions. Indian J Phys 90, 749–757 (2016). https://doi.org/10.1007/s12648-015-0811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0811-8

Keywords

PACS Nos.

Navigation