Skip to main content

Advertisement

Log in

Effect of pressure on structural, electronic, mechanical and optical properties of ruthenium diboride with oP12-type structure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural parameters, electronic, elastic, hardness and optical properties of oP12-type RuB2 (Space group Pnma, No: 62) are investigated by means of density functional theory method within local-density approximation as a function of pressure. It is shown that the results at 0 GPa pressure are in good agreement with related theoretical and experimental data. The pressure dependence of elastic constants, special bond lengths, Mulliken bond populations, hardness, energy band gaps, charge densities and optical properties such as dielectric function, absorption coefficient, reflectivity function, extinction coefficient, refractive index, energy loss spectrum of oP12-type RuB2 have been investigated. It is observed that the oP12-type RuB2 compound exhibits anisotropic compressibility under hydrostatic pressure: c-direction is more compressible than a- and b-directions, due to the different bond stiffness and bond angle changes. From calculated partial density of states, Mulliken populations and 2D/3D electron densities, the nature of chemical bonding for RuB2 can be recognized as a combination of partially covalent, ionic and metallic bonds. The calculated hardness value shows that oP12- type RuB2 is hard material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H Chung, M B Weinberger, J Yang, S H Tolbert and R B Kaner Appl. Phys. Lett. 92 261904 (2008)

    Article  ADS  Google Scholar 

  2. R W Cumberland, M B Weinberger, J J Gilman, S M Clark, S H Tolbert and R B Kaner J. Am. Chem. Soc. 127 7264 (2005)

    Article  Google Scholar 

  3. J R B Roof and C P Kempter J. Chem. Phys. 37 1473 (1962)

    Article  ADS  Google Scholar 

  4. B Aronsson Acta Chem. Scand. 17 2036 (1963)

    Article  Google Scholar 

  5. S Chiodo, H J Gotsis, N Russo and E Sicilia Chem. Phys. Lett. 425 311 (2006)

    Article  ADS  Google Scholar 

  6. F Peng, W Peng, H Fu and X Yang Phys. B 404 3363 (2009)

    Article  ADS  Google Scholar 

  7. X Hao, Y Xu, Z Wu, D Zhou, X Liu and J Meng J. Alloys Compd. 453 413 (2008)

    Article  Google Scholar 

  8. Y Wang, L Yuan and J Yang Chin. Phys. Lett. 25 3036 (2008)

    Article  ADS  Google Scholar 

  9. F Luo, Y Cheng, G Ji and X Chen Chin. Phys. Lett. 26 097101 (2009)

    Article  ADS  Google Scholar 

  10. X Hao, Y Xu and F Gao J. Phys.: Condens. Matter 23 125501 (2011)

    ADS  Google Scholar 

  11. E Deligoz, K Colakoglu and Y O Ciftci Chin. Phys. B 21 106301 (2012)

    Article  ADS  Google Scholar 

  12. K Li, P Yang and D Xue Acta Mater. 60 35 (2012)

    Article  Google Scholar 

  13. A N Kolmogorov, S Shah, E R Margine, A F Bialon, T Hammerschmidt and R. Drautz Phys. Rev. Lett. 105 217003 (2010)

    Article  ADS  Google Scholar 

  14. P Yong, Z Kunhua, G Weiming and C Song Rare Metal Mater. Eng. 41 2086 (2012)

    Article  Google Scholar 

  15. H K Mao and R J Hemley Am. Sci. 80 234 (1992)

    ADS  Google Scholar 

  16. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  17. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. M D Segall et al. J. Phys.: Condens. Matter 14 2717 (2002)

    ADS  Google Scholar 

  19. T H Fischer and J Almlof J. Phys. Chem. 96 9768 (1992)

    Article  Google Scholar 

  20. D M Ceperley and B J Alder Phys. Rev. Lett. 45 566 (1980)

    Article  ADS  Google Scholar 

  21. J P Perdew and A Zunger Phys. Rev. B 23 5048 (1981)

    Article  ADS  Google Scholar 

  22. D Vanderbilt Phys. Rev. B 41 7892 (1990)

    Article  ADS  Google Scholar 

  23. R I Eglitis J. Mod. Phys. B 28 1430009 (2014)

    Article  ADS  Google Scholar 

  24. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. M Frotscher, M Hölzel and B Albert Z. Anorg. Allg. Chem. 636 1783 (2010)

    Article  Google Scholar 

  26. J-D Zhang, X-L Cheng and D-H Li J. Alloys Compd. 509 9577 (2011)

    Article  Google Scholar 

  27. H Y Wang, X R Chen, W J Zhu and Y Cheng Phys. Rev. B 72 172502 (2005)

    Article  ADS  Google Scholar 

  28. K Liu and X L Zhou Phys. B 388 213 (2007)

    Article  ADS  Google Scholar 

  29. X L Zhu, D H Li and X L Cheng Solid State Commun. 147 301 (2008)

    Article  ADS  Google Scholar 

  30. P Kroll Phys. Rev. Lett. 90 125501 (2003)

    Article  ADS  Google Scholar 

  31. Y H Duan, Y Sun, M J Peng and Z Z Guo Solid State Sciences 13 455 (2011)

    Article  ADS  Google Scholar 

  32. R S Mulliken J. Chem. Phys. 23 1833 (1955)

    Article  ADS  Google Scholar 

  33. L Guan et al. Solid State Commun. 150 2011 (2010)

    Article  ADS  Google Scholar 

  34. K Haddadi, A Bouhemadou and L Louail J. Alloys Compd. 504 296 (2010)

    Article  Google Scholar 

  35. Y Li et al. J. Alloys Compd. 509 5242 (2011)

    Article  Google Scholar 

  36. R Hill J. Mech. Phys. Solids 11 357 (1963)

    Article  ADS  Google Scholar 

  37. Z-J Wu, E J Zhao, H P Xiang, X F Hao, X J Liu and J Meng Phys. Rev. B 76 054115 (2007)

    Article  ADS  Google Scholar 

  38. Q-J Liu and Z-T Liu Mater. Sci. Semicond. Process. 27 765 (2014)

    Article  Google Scholar 

  39. K B Panda and K S R Chandran Acta Mater. 54 1641 (2006)

    Article  Google Scholar 

  40. R Hill Proc. Phys. Soc. London 65 350 (1952)

    Article  ADS  Google Scholar 

  41. S F Pugh Phil. Mag. 45 823 (1954)

    Article  Google Scholar 

  42. V V Bannikov, I R Shein, A L Ivanovskii Phys. Status Solidi (RRL) 1 89 (2007)

    Article  ADS  Google Scholar 

  43. I Johnston, G Keeler, R Rollins and S Spicklemire Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (New York: Wiley) (1996)

    Google Scholar 

  44. A Simunek and J Vackar Phys. Rev. Lett. 96 085501 (2006)

    Article  ADS  Google Scholar 

  45. A Simunek Phys. Rev. B 75 172108 (2007)

    Article  ADS  Google Scholar 

  46. J Sun, X-F Zhou, Y-X Fan, J Chen and H-T Wang Phys. Rev. B 73 045108 (2006)

    Article  ADS  Google Scholar 

  47. W B Pearson The Crystal Chemistry and Physics of Metals and Alloys (New York: Wiley), p 151 (Table 4-4) (1972)

    Google Scholar 

  48. Y Shen and Z Zhou J. Appl. Phys. 103 074113 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the research projects of Ankara University under Grant No. 12B4343020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. O. Ciftci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, S., Ciftci, Y.O., Mogulkoc, Y. et al. Effect of pressure on structural, electronic, mechanical and optical properties of ruthenium diboride with oP12-type structure. Indian J Phys 90, 767–779 (2016). https://doi.org/10.1007/s12648-015-0808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0808-3

Keywords

PACS Nos.

Navigation