Skip to main content
Log in

Rayleigh–Taylor instability of a stratified magnetized quantum Plasma in a porous and incompressible medium

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Rayleigh–Taylor instability of stratified magnetized quantum plasma in a porous medium has been investigated. Medium is assumed to be highly conducting and incompressible. The relevant quantum magnetohydrodynamic equations are solved by using appropriate boundary conditions and a dispersion relation is obtained. The dispersion relation is derived for the case, where plasma is bounded by two rigid planes. The growth rate of unstable Rayleigh–Taylor mode and stability conditions of the medium are evaluated analytically with the parameters quantum effect, magnetic field, porosity and permeability in the stratified fluids. It is found that the magnetic field and quantum effect have more stabilizing influence on Rayleigh–Taylor instability in presence of porous media. We have also found that the porosity has stabilizing influence, while permeability has destabilizing influence on Rayleigh–Taylor instability in presence of quantum effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L Rayleigh Proc. of London Math. Soc. 14 170 (1882).

    Article  MathSciNet  Google Scholar 

  2. G I Taylor Proc. R. Soc. A Math. Phys. Eng. Sci. 201 192 (1950).

    Article  MATH  ADS  Google Scholar 

  3. S Chandrasekhar Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon press) (1961).

    MATH  Google Scholar 

  4. A Ghasemizad, H Zarringhalam and L Gholamzadeh J Plasma Fusion Res. Ser. 8 1234 (2009).

    Google Scholar 

  5. J J Hester et al. Astrophys. J. 456 225 (1996).

    Article  ADS  Google Scholar 

  6. H Alfven On the Origin of the Solar System (Oxford: Clarendon press) (1954).

    MATH  Google Scholar 

  7. P H Roberts Astrophys. J. 137 679 (1963).

    Article  ADS  Google Scholar 

  8. J D Jukes J. Fluid Mech. 16 177 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. N T Eldabe J. Phys. Soc. Japan 5 115 (1989).

    Article  ADS  Google Scholar 

  10. K O Mikaelian Phys. Rev. A 28 1637(1983).

    Article  ADS  Google Scholar 

  11. R A Goldston and P H Rutherford Introduction to Plasma Physics (London: Institute of Physics) (1997).

    Google Scholar 

  12. P K Shukla and S Ali Phys. Plasmas 12 114502 (2005).

    Article  ADS  Google Scholar 

  13. S Ali and P K Shukla Phys. Plasmas 13 022313 (2006).

    Article  ADS  Google Scholar 

  14. Y D Jung Phys. Plasmas 8 3842 (2002).

    Article  ADS  Google Scholar 

  15. D Kremp, T Bornath Th M Bonitz and M Schlanges Phys. Rev. E 60 4725 (1999).

    Article  ADS  Google Scholar 

  16. P A Markowic, C A Ringhofer and C Schmeiser Semiconductor equations (New York: Springer) (1990).

    Book  Google Scholar 

  17. M Opher, L O Silva, D E Dauger, V K Decyk and J M Dawson Phys. Plasmas 8 2454 (2001).

    Article  ADS  Google Scholar 

  18. B Eliasson and P K Shukla J. Plasma Phys. 76 7 (2010).

    Article  ADS  Google Scholar 

  19. G Manfredi and F Hass Phys. Rev. B 64 075316 (2001).

    Article  ADS  Google Scholar 

  20. G Manfredi Fields Inst. Commun. 46 263 (2005).

    MathSciNet  Google Scholar 

  21. F Hass Phys. Plasmas 12 062117 (2005).

    Article  ADS  Google Scholar 

  22. J Cao, H Ren, Z Wu and P K Chu Phys. Plasmas 15 012110 (2008).

    Article  ADS  Google Scholar 

  23. G A Hoshoudy Chin. Phys. Lett. 27 125201 (2010).

    Article  ADS  Google Scholar 

  24. G A Hoshoudy Plasma Phys. Rep. 37 775 (2011).

    Article  ADS  Google Scholar 

  25. O M Philips Geological Fluid Dynamics Sub-surface Flow and Reactions (New York: Cambridge University Press) (2009).

    Book  Google Scholar 

  26. J A M McDonnell Cosmic Dust (Toronto: Wiley), p 330 (1978).

    Google Scholar 

  27. R C Sharmam and Z Sunil Naturfors 47a 1227 (1992).

    ADS  Google Scholar 

  28. S Oza and P K Bhatia Astrophys. Space Sci. 199 279 (1993).

    Article  MATH  ADS  Google Scholar 

  29. A Khan, S S Tak and P Patni Turk. J. Eng. Environ. Sci. 34 59 (2010).

    Google Scholar 

  30. S Y Gus’kov J Russian Laser Res 31 574 (2010).

    Article  Google Scholar 

  31. Z Q Zhang and P Sheng Phys. Rev. E 49 3050 (1994).

    Article  ADS  Google Scholar 

  32. E Krentsel, H Yasuda, M Miyama and T Yasuda J Polymer Sci Part A Polymer Chem 33 2887 (2003).

    Article  ADS  Google Scholar 

  33. G A Hoshoudy Phys. Lett. A 373 2560 (2009).

    Article  MATH  ADS  Google Scholar 

  34. G A Hoshoudy J. Mod. Phys. 2 1146 (2011).

    Article  Google Scholar 

  35. G A Hoshoudy J. Porous Media 15 373 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, Prof. D. C. Gupta, BUIT and Prof. M. D. Tiwari, Barkatullah University, Bhopal, for their constant encouragement in this work. Authors also express their sincere thanks to MPCST, Bhopal, for providing research fellowship and financial assistance under the sponsored research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P K Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Argal, S. & Sharma, P.K. Rayleigh–Taylor instability of a stratified magnetized quantum Plasma in a porous and incompressible medium. Indian J Phys 89, 1313–1319 (2015). https://doi.org/10.1007/s12648-015-0708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0708-6

Keywords

PACS Nos.

Navigation