Skip to main content
Log in

Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Starch capped PbS, CdS and PbS–CdS nanocomposites are conjugated with Calf–Thymus DNA. All the materials are characterized by X-ray diffraction, high-resolution transmission electron microscopy, UV–Vis spectroscopy and photoluminescence spectroscopy. The x-ray diffraction patterns of PbS and CdS show that the materials possess polycrystalline having both cubic and hexagonal phases. High resolution transmission electron microscopic results (HRTEM) shows PbS nanoparticles of size 3 nm and that of CdS nanoparticles having average size 4 nm which exhibit tendency of agglomeration. In case of PbS/CdS, it exhibits different types of nanosheets. The UV absorption spectra of all the samples exhibit clear blue-shift with the respective bulk absorption edges. This is attributed to the strong quantum confinement in the materials. The absorption spectra also exhibit increase of the band gaps from 2.25 to 4.35 eV for PbS; 2.25–4.2 eV for CdS with decrease of molarities from 0.1 to 0.001 M as well as conjugated with DNA. The photoluminescence spectra of all PbS, CdS and PbS/CdS composites synthesized at 0.1 M molar concentration show a further blue shift and an enhancement of intensity after conjugation with DNA, but the effect is reversed i.e. occurrence of red shift and reduction of intensity for those having 0.01 M. This is due to the two competing processes of surface passivation as well as stabilization of nanocomposites governed by bio-molecules and that of Dexter energy transfer with the effective charge separation. The result shows the applicability of the materials in development of biological labels and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X Shen, Z Li, Y Cui and Y Pang Int. J. Electrochem. Sci. 6 3525 (2011)

    Google Scholar 

  2. C Liu, Y Jiang, J Huang and H Duan Int. J. Nanosci. 6 3121 (2012)

    Google Scholar 

  3. G Mandal and T Ganguly Indian J Phys. 85 1229 (2011)

    Article  Google Scholar 

  4. S Bhushan and A Shrivastava Indian J. Phys. 84 1517 (2010)

    Article  Google Scholar 

  5. S Jana, R Thapa, R Maity and K K Chattopadhyay Phys. E 40 3121 (2008)

    Article  Google Scholar 

  6. D M M Atwa, I M Azzouz and Y Badr Appl. Phys. B 103 161 (2011)

    Google Scholar 

  7. K J Mispa, P Subramaniam and R Murugeson Chalcogenide Lett. 5 335 (2010)

    Google Scholar 

  8. C C Uhuegbu Can. J. Sci. Ind. Res. 6 230 (2011)

  9. X Zhao, I Gorelikov, S Musikhin, S Cauchi and V Sukhovatkin Langmuir 21 1086 (2005)

    Google Scholar 

  10. J Akhtar, et al. J. Mater. Chem. 20 2336 (2010)

    Article  Google Scholar 

  11. L Bakueva, I Gorekilov, S Musikhin, X S Zhao, E H Sergeant and E Kumucheva Adv. Mater. 11 126 (2004)

    Google Scholar 

  12. N Faleni and M J Moloto IJRRAS 14 127 (2013)

    Google Scholar 

  13. M Rahnkim, Y M Kanoj and D J Jang J. Phys. Chem. C 111 18507 (2007)

    Article  Google Scholar 

  14. J Song, Z Dai, W GUO, Y Li and W Wang Prz. Elektrotech. 1b 89 (2013)

  15. N Ma, J Yang, K M Stewart and S Kelley Langmuir 23 12783 (2007)

    MathSciNet  Google Scholar 

  16. N M Bakhori, N A Yusof, A H Abdullah and M Z Hussein 2nd ICESB 48 138 (2012)

  17. A Merkoce Biosens. Bioelectron. 2b 1164 (2010)

  18. M F Frasco and N Chaniotalis Sensors 9 7266 (2009)

    Article  Google Scholar 

  19. S Gulia and R Kakkar Adv. Mater. Lett. 12 876 (2013)

    Google Scholar 

  20. Y Fu, X Wang, J Zhang and W Li Curr. Opin. Biotech. 28 33 (2014)

    Article  Google Scholar 

  21. N Ma, G Tikhomirov and S O Kelley Acc. Chem. Res. 43 173 (2010)

    Article  Google Scholar 

  22. N Choudhury and B K Sarma Indian J Pure Appl. Phys. 46 261 (2008)

    Google Scholar 

  23. Y A Kalandaragh, M B Muradov, R K Mamedov, M Behboudnia and A Khodayari Optoelectron. Adv. Mater. 2 42 (2008)

  24. A D Mohammed, D C Onwudiwe, D A Young and H C M Vosloo Mater. Lett. 114 63 (2014)

    Article  Google Scholar 

  25. M A Mohammed, A M Mousa and J P Ponpon J. Semicond. Tech. Sci. 9 117 (2009)

    Article  Google Scholar 

  26. M A Barote, S S Kamble, A A Yadav, R V Suryavanshi, L P Deshmukh and E U Masumdar Mater. Lett. 78 113 (2012)

    Google Scholar 

  27. H C Warad, S C Ghosh, B Henstanson, C Thanachayanont and J Dutta Sci. Technol. Adv. Mater. 6 296 (2005)

    Article  Google Scholar 

  28. R R Thankaleshmi, S Dixit and A C Rastogi Adv. Mater. Lett. 4 9 (2013)

    Google Scholar 

  29. S Y Jang, Y M Song, H S Kim, Y J Cho and Y S Seo ACS Nano 4 2391 (2010)

    Article  Google Scholar 

  30. G H Yue, P X Yan, J Z Liu, D M Qu, Q Yang and X Y Fan J. Cryst. Growth 293 428 (2006)

    Article  ADS  Google Scholar 

  31. Y Wang, Q Guo, S Lin, B Chen and D Zheng J. Phys.: Conf. Ser. 152 012018 (2009)

  32. D Kumar, G Agarwal, B Tripathi, D Vyas and V Kulshrestha J Alloy. Compd. 484 463 (2009)

    Article  Google Scholar 

  33. B Zhang, G Li, J Zhang, Y Zhang and L Zhang Nanotechnology 14 443 (2003)

    Google Scholar 

  34. A A Lutich, G Jiang, A S Susha, A L Rogach, F D Stefani and J Feldmann Nano Lett. 9 2636 (2009)

    Article  Google Scholar 

  35. C H Vannoy, A J Tavares, M O Noor, U Uddayasankar and U J Krull Sensors 11 9732 (2011)

    Google Scholar 

Download references

Acknowledgments

We acknowledge Department of Chemistry, Gauhati University for providing UV–Vis and PL Characterization, CIF and Department of Physics, IIT Guwahati for giving the facilities for HRTEM and XRD measurements. We also acknowledge Department of Bio-Technology, Gauhati University for providing the DNA solution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Konwar, R. & Kalita, P.K. Optical properties of DNA induced starch capped PbS, CdS and PbS/CdS nanocomposites. Indian J Phys 89, 845–855 (2015). https://doi.org/10.1007/s12648-014-0645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0645-9

Keywords

PACS Nos.

Navigation