Skip to main content
Log in

Density functional theory calculations of the carbon nanotube based P–N junction by substitution of carbon atoms with B, N, Ge and Sn

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Ab initio density functional theory calculations have been used to investigate the carbon nanotube-based P–N, N–P–N and P–N–P junctions. For this purpose, we have used a zigzag (5, 0) carbon nanotube and some of it’s derivatives, obtained by manually replacing carbon atoms with doping elements like B, N, Ge and Sn. To characterize the stability and electrical functionality of these structures, different quantum mechanical parameters such as Gibbs free energy, energy gap, dipole moment and density of states have been investigated. The obtained results indicate that the doping mechanism implemented for these structure designs, are highly promising for high speed diodes applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A Javey, J Gue, Q Wian, M Lundstrom and H Dai Nature 424 654 (2003).

    Article  ADS  Google Scholar 

  2. J Y Park Nanotechnology 18 095202 (2007).

    Article  ADS  Google Scholar 

  3. L Castro PhD thesis (University of British Colombia, Canada) (2007).

  4. R H Xie, G W Bryant, J Zhao, V H Smith, A D Carlo and A Pecchia Phys. Rev. Lett. 90 206602 (2003).

    Article  ADS  Google Scholar 

  5. O Stephane et al. Science 266 1683 (1994).

  6. M Terrones et al. Mater. Today 7 30 (2004).

  7. F Buonocore Philos. Mag. 87 1097 (2005).

    Article  ADS  Google Scholar 

  8. R Arenal BCN Nanotubes and Related Nanostructures (ed.) Y Khin (New York: Springer) (2009).

  9. C S Yeung, Y K Chen and Y A Wang J. Nanotechnol. 2010 801789 (2010).

    Article  Google Scholar 

  10. D Qian Nanotechnology and Nanomaterials (ed.) N Lupu (Croatia: Intech Europe) (2010).

  11. J Xie, U Zheng, Sh Liu, G Cao and X Zhao J. Mater. Sci. Technol. 28 275 (2012).

    Article  Google Scholar 

  12. A Caballero, J Morales and L Sánchez Electrochem. Solid-State Lett. 8 A464 (2005).

    Article  Google Scholar 

  13. A Aviram and M A Ranter Chem. Phys. Lett. 29 277 (1974).

    Article  ADS  Google Scholar 

  14. V Mujica, M A Ranter and A Nitzan Chem. Phys. 281 147 (2002).

    Article  ADS  Google Scholar 

  15. ZW Sieh et al. Phys. Rev. B 51 11229 (1995).

  16. T I Kamins, X Li, R S Williams and X Liu Nano lett. 4 503 (2004).

    Article  ADS  Google Scholar 

  17. M Frisch GAUSSIAN 98. Gaussian inc. (1998).

  18. A D Becke J. Chem. Phys. 98 5648 (1993).

    Article  ADS  Google Scholar 

  19. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  20. S Azevedo and R De Paiva Europhys. Lett. 75 126 (2006).

    Article  ADS  Google Scholar 

  21. A E Reed, L A Curtiss and F Weinhold Chem. Rev. 88 899 (1988).

    Article  Google Scholar 

  22. Ch Biswas, S Y Lee, Th H Ly, A Ghosh, Q N Dang and Y H Lee ACS Nano 5 9817 (2011).

    Article  Google Scholar 

  23. H Sabzyan and M R Noorbala J. Mol. Struct. theochem 626 143 (2003).

    Article  Google Scholar 

  24. K Oyaizu, T Iwasaki, Y Tsukahara and E Tsuchida Macromolecules 37 1257 (2004).

    Article  ADS  Google Scholar 

  25. H Sabzyan and H Nikoofard Chem. Phys. 306 105 (2004).

    Article  ADS  Google Scholar 

  26. A H Safarpour, S M Hashemianzadeh and A Kasaeian J. Mol. Model 14 315 (2008).

    Article  Google Scholar 

  27. N O Boyle GaussSum 3.0. http://www.gausssum.sf.net (2006).

  28. S S Olthof PhD Thesis (University of Dresden, Germany) (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalian, M., Jalili, Y.S. & Abbasi, A. Density functional theory calculations of the carbon nanotube based P–N junction by substitution of carbon atoms with B, N, Ge and Sn. Indian J Phys 89, 663–669 (2015). https://doi.org/10.1007/s12648-014-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0631-2

Keywords

PACS Nos.

Navigation