Skip to main content
Log in

Global delay induced transition in a bistable system with multiplicative and additive noises

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Global time delay is introduced to a bistable system driven by multiplicative and additive noises. Approximation of small delay and numerical simulations are employed to investigate the delay induced transition. The stationary probability distribution function \(P_{st}(x)\) and the first order moment \(\langle x\rangle _{st}\) are derived. Results indicate that with the increase of global time delay, \(P_{st}(x)\) undergoes a transition from a bimodal structure to a unimodal shape and \(\langle x\rangle _{st}\) as a function of the multiplicative noise intensity exhibits suppression-like and resonance-like behavior. For the case of multiplicative noise with delay, \(P_{st}(x)\) undergoes a transition from a monostable to a bistable system. These results illustrate that global delay can control the transition of a bistable system effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L S Tsimring and A Pikovsky Phys. Rev. Lett. 87 250602 (2001)

    Article  ADS  Google Scholar 

  2. D Huber and L S Tsimring Phys. Rev. Lett. 91 260601 (2003)

    Article  ADS  Google Scholar 

  3. C Masoller Phys. Rev. Lett. 90 020601 (2003)

    Article  ADS  Google Scholar 

  4. L C Du and D C Mei J. Stat. Mech.: Theory Exp. 11 P11020 (2008)

    Article  Google Scholar 

  5. T D Frank Phys. Rev. E 72 011112 (2005)

    Article  ADS  Google Scholar 

  6. D Wu, S Q Zhu and X Q Luo Europhys. Lett. 86 50002 (2009)

    Article  ADS  Google Scholar 

  7. X Gu, S Q Zhu and D Wu Eur. Phys. J. D 42 461 (2007)

    Article  ADS  Google Scholar 

  8. L R Nie and D C Mei Chin. Phys. Lett. 24 3074 (2007)

    Article  ADS  Google Scholar 

  9. L C Du and D C Mei Phys. Scr. 84 015003 (2011)

    Article  ADS  Google Scholar 

  10. J Shi, M Luo and C Huang Indian J. Phys. 84 1229 (2010)

  11. D Wu and S Q Zhu Phys. Lett. A 363 202 (2007)

    Article  ADS  Google Scholar 

  12. A Tawfik J. Phys. G 40 055109 (2013)

    Article  ADS  Google Scholar 

  13. A Tawfik Int. J. Theor. Phys 51 1396 (2012)

    Article  MATH  Google Scholar 

  14. A Tawfik Prog. Theor. Phys. 126 279 (2011)

    Article  ADS  MATH  Google Scholar 

  15. S Guillouzic, I L’Heureux and A Longtin Phys. Rev. E 61 4906 (2000)

    Article  ADS  Google Scholar 

  16. X Gu and S Q Zhu Eur. Phys. J. D 56 215 (2009)

    Article  ADS  Google Scholar 

  17. L C Du, Z C Dai and D C Mei Chin. Phys. B 19 080503 (2010)

    Article  ADS  Google Scholar 

  18. C Li, L C Du and D C Mei Mod. Phys. Lett. B 25 141 (2011)

    Article  ADS  MATH  Google Scholar 

  19. L C Du and D C Mei Eur. Phys. J. B 85 75 (2012)

    Article  ADS  Google Scholar 

  20. T D Frank and P J Beek Phys. Rev. E 64 021917 (2001)

    Article  ADS  Google Scholar 

  21. C Van den Broeck, J M R Parrondo and R Toral Phys. Rev. Lett. 73 3395 (2003)

    Article  ADS  Google Scholar 

  22. P K Mohanty and A Politi J. Phys. A: Math. Gen. 39 L415 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. T Wanger, K Takagaki, M T Lippert, J Goldschmidt and F W Ohl BMC Neurosci 14 78 (2013)

    Article  Google Scholar 

  24. F Ginelli, H Hinrichsen, R Livi, D Mukamel and A Politi Phys. Rev. E 71 023121 (2005)

    Article  Google Scholar 

  25. D J Wu, L Cao and S Z Ke Phys. Rev. E 50 2496 (1994)

    Article  ADS  Google Scholar 

  26. K P Singh, G Ropars, M Brunel and A Le Floch Phys. Rev. Lett. 90 073901 (2003)

    Article  ADS  Google Scholar 

  27. S Guillouzic, I L’Heureux and A Longtin Phys. Rev. E 59 3970 (1999)

    Article  ADS  Google Scholar 

  28. J M Sancho, M San Miguel, S L Katz and J D Gunton Phys. Rev. A 26 1589 (1982)

    Article  ADS  Google Scholar 

  29. W H Press, S A Teukolsky, W T Vetterling and B P Flannery Numerical Recipes in C (Cambridge: Cambridge University Press) (1992)

    MATH  Google Scholar 

  30. F Sagués, J M Sancho and J García-Ojalvo Rev. Mod. Phys. 79 829 (2007)

    Article  ADS  Google Scholar 

  31. J García-Ojalvo and J García-Ojalvo Noise in Spatially Extended Systems (New York: Springer) (1999)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11247027), the West Light Foundation of The Chinese Academy of Sciences and and the Science Foundation of Yunnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L.C., Mei, D.C. Global delay induced transition in a bistable system with multiplicative and additive noises. Indian J Phys 89, 267–272 (2015). https://doi.org/10.1007/s12648-014-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0581-8

Keywords

PACS No.

Navigation