Skip to main content
Log in

Supervised Machine Learning Based Approach for Early Fault Detection in Polymer Gears Using Vibration Signals

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The comprehensive mechanical features of polymer gears have demonstrated their potential for power transmission. The primary concern with expanding their power transmission applications is developing a reliable fault detection technique. In this manuscript, an early fault detection method of polymer gear is proposed using supervised machine learning with Hjorth parameters (HP). In this work, HP is used along with traditional statistical features to improve the polymer gear fault detection accuracy from vibration signals in the early stage. Vibration signals are acquired experimentally at a different class of polymer gear faults, namely healthy, slight, moderate, and severe pitting. The HP and SF vectors are extracted from the optimum intrinsic mode function of empirical mode decomposition and empirical wavelet transform (EWT). After that, faults are classified by three different classification algorithms, namely support vector machine, linear discriminant analysis, and K-nearest neighbor (KNN). Evaluating the result of these three classifiers with three sets of feature vectors (SF, HP and a combination of SF and HP) and comparing all the results with raw signal data. The result showed that the maximum accuracy, i.e., 99.3%, is achieved by KNN classifier with EWT method for signal decomposition using a combination of HP and SF vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Jain, S. Patil and S.S. Ghosh, A review on failure characteristics of polymeric gears. AIP Conf Proc (2019). https://doi.org/10.1063/1.5123979.

    Article  Google Scholar 

  2. G. Yu, H. Liu, K. Mao, C. Zhu and Z. Lu, Examination on the wear process of polyformaldehyde gears under dry and lubricated conditions. Friction, 9 (2021) 538–550. https://doi.org/10.1007/s40544-020-0362-7.

    Article  Google Scholar 

  3. Z. Lu, H. Liu, P. Wei, C. Zhu, D. Xin and Y. Shen, The effect of injection molding lunker defect on the durability performance of polymer gears. Int J Mech Sci, 180 (2020) 105665. https://doi.org/10.1016/j.ijmecsci.2020.105665.

    Article  Google Scholar 

  4. R.F. Handschuh, K.E. Laberge, S. Deluca and R. Pelagalli, Vibration and operational characteristics of a composite-steel (hybrid) gear 13 (2014) 80–87.

  5. E. Sim, C. Kim, K.S. Kwak and B. Kim, Optimum interface shape and vibration test for a new transmission helical gear composed of steel and aramid/phenol composite. J Mech Sci Technol, 34 (2020) 1629–1634. https://doi.org/10.1007/s12206-020-0325-y.

    Article  Google Scholar 

  6. C.M. Illenberger, T. Tobie and K. Stahl, Flank load carrying capacity of oil-lubricated high performance plastic gears: analysis of the pitting development in back-to-back tests. Forsch Im Ingenieurwesen/Eng Res, 83 (2019) 545–552. https://doi.org/10.1007/s10010-019-00332-x.

    Article  Google Scholar 

  7. B. Sarita and S. Senthilvelan, Effects of lubricant on the surface durability of an injection molded polyamide 66 spur gear paired with a steel gear. Tribol Int, 137 (2019) 193–211. https://doi.org/10.1016/j.triboint.2019.02.050.

    Article  Google Scholar 

  8. G. Yu, H. Liu, K. Mao, C. Zhu, P. Wei and Z. Lu, An Experimental Investigation on the Wear of Lubricated Steel against PEEK Gears. J Tribol, 142 (2020) 1–7. https://doi.org/10.1115/1.4045627.

    Article  Google Scholar 

  9. A. Kumar, A. Parey and P.K. Kankar, Vibration based fault detection of polymer gear. Mater Today Proc, 44 (2021) 2116–2120. https://doi.org/10.1016/j.matpr.2020.12.271.

    Article  Google Scholar 

  10. V. Vakharia, V.K. Gupta and P.K. Kankar, Bearing fault diagnosis using feature ranking methods and fault identification algorithms. Procedia Eng, 144 (2016) 343–350. https://doi.org/10.1016/j.proeng.2016.05.142

    Article  Google Scholar 

  11. A. Parey and A. Singh, Gearbox fault diagnosis using acoustic signals, continuous wavelet transform and adaptive neuro-fuzzy inference system. Appl Acoust, 147 (2019) 133–140. https://doi.org/10.1016/j.apacoust.2018.10.013.

    Article  Google Scholar 

  12. Lo NG, Soualhi A, Frini M, Razik H. Gear and bearings fault detection using motor current signature analysis. Proc 13th IEEE Conf Ind Electron Appl ICIEA 2018 (2018) 900–905. https://doi.org/10.1109/ICIEA.2018.8397840.

  13. T. Toutountzakis, C.K. Tan and D. Mba, Application of acoustic emission to seeded gear fault detection. NDT E Int, 38 (2005) 27–36. https://doi.org/10.1016/j.ndteint.2004.06.008.

    Article  Google Scholar 

  14. H. Mahgoun, F. Chaari and A. Felkaoui, Detection of gear faults in variable rotating speed using variational mode decomposition (VMD). Mech Ind (2016). https://doi.org/10.1051/meca/2015058.

    Article  Google Scholar 

  15. Y. Guo, W. Yan and Z. Bao, Gear fault diagnosis of wind turbine based on discrete wavelet transform. Proc World Congr Intell Control Autom (2010). https://doi.org/10.1109/WCICA.2010.5554606.

    Article  Google Scholar 

  16. N. Upadhyay and P.K. Kankar, Diagnosis of bearing defects using tunable Q-wavelet transform. J Mech Sci Technol, 32 (2018) 549–558. https://doi.org/10.1007/s12206-018-0102-8.

    Article  Google Scholar 

  17. A.S. Minhas, G. Singh, J. Singh, P.K. Kankar and S. Singh, A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy. Meas J Int Meas Confed, 154 (2020) 107441. https://doi.org/10.1016/j.measurement.2019.107441.

    Article  Google Scholar 

  18. P. Singh and S.P. Harsha, Statistical and frequency analysis of vibrations signals of roller bearings using empirical mode decomposition. Proc Inst Mech Eng Part K J Multi-Body Dyn, 233 (2019) 856–870. https://doi.org/10.1177/1464419319847921.

    Article  Google Scholar 

  19. A. Parey, M. El Badaoui, F. Guillet and N. Tandon, Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. J Sound Vib, 294 (2006) 547–561. https://doi.org/10.1016/j.jsv.2005.11.021.

    Article  ADS  Google Scholar 

  20. B. Kim and J. Lee, Fault diagnosis and noise robustness comparison of rotating machinery using CWT and CNN. Adv Sci Technol Eng Syst J, 6 (2021) 1279–1285. https://doi.org/10.25046/aj0601146.

    Article  Google Scholar 

  21. T. Bettahar, C. Rahmoune, D. Benazzouz and B. Merainani, New method for gear fault diagnosis using empirical wavelet transform, Hilbert transform, and cosine similarity metric. Adv Mech Eng (2020). https://doi.org/10.1177/1687814020927208.

    Article  Google Scholar 

  22. X. Zhang, J. Wang, Z. Liu and J. Wang, Weak feature enhancement in machinery fault diagnosis using empirical wavelet transform and an improved adaptive bistable stochastic resonance. ISA Trans, 84 (2019) 283–295. https://doi.org/10.1016/j.isatra.2018.09.022.

    Article  Google Scholar 

  23. S. Paudyal, M.S.A. Atique and C.X. Yang, Local maximum acceleration based rotating machinery fault classification using KNN. IEEE Int Conf Electro Inf Technol (2019). https://doi.org/10.1109/EIT.2019.8833788.

    Article  Google Scholar 

  24. A. Sharma, M. Amarnath and P.K. Kankar, Novel ensemble techniques for classification of rolling element bearing faults. J Brazilian Soc Mech Sci Eng, 39 (2017) 709–724. https://doi.org/10.1007/s40430-016-0540-8.

    Article  Google Scholar 

  25. D. Garrett, D.A. Peterson, C.W. Anderson and M.H. Thaut, Comparison of linear, nonlinear, and feature selection methods for EEG signal classification 11 (2003) 141–144.

  26. V. Vakharia, V.K. Gupta and P.K. Kankar, A comparison of feature ranking techniques for fault diagnosis of ball bearing. Soft Comput, 20 (2016), 1601–1619. https://doi.org/10.1007/s00500-015-1608-6

    Article  Google Scholar 

  27. Y. Lei and M.J. Zuo, Gear crack level identification based on weighted K nearest neighbor classification algorithm. Mech Syst Signal Process, 29 (2009) 1535–1547. https://doi.org/10.1016/j.ymssp.2009.01.009.

    Article  ADS  Google Scholar 

  28. R.K. Patel and V.K. Giri, Feature selection and classification of mechanical fault of an induction motor using random forest classifier. Perspect Sci, 8 (2016) 334–337. https://doi.org/10.1016/j.pisc.2016.04.068.

    Article  Google Scholar 

  29. L. Lu, J. Yan and C.W. De Silva, Dominant feature selection for the fault diagnosis of rotary machines using modified genetic algorithm and empirical mode decomposition. J Sound Vib, 344 (2015) 464–483. https://doi.org/10.1016/j.jsv.2015.01.037.

    Article  ADS  Google Scholar 

  30. F. Chen, B. Tang and R. Chen, A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm. Meas J Int Meas Confed, 46 (2013) 220–232. https://doi.org/10.1016/j.measurement.2012.06.009.

    Article  Google Scholar 

  31. X. Yan and M. Jia, A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing, 313 (2018) 47–64. https://doi.org/10.1016/j.neucom.2018.05.002.

    Article  Google Scholar 

  32. W. Li, L. Zhang and Y. Xu, Gearbox pitting detection using linear discriminant analysis and distance preserving self-organizing map. 2012 IEEE I2MTC—Int Instrum Meas Technol Conf Proc (2012) 2225–2229. https://doi.org/10.1109/I2MTC.2012.6229667.

  33. B. Hjorth, EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol, 12 (1970) 306–310.

    Article  Google Scholar 

  34. M. Mouzé-Amady and F. Horwat, Evaluation of Hjorth parameters in forearm surface EMG analysis during an occupational repetitive task. Electroencephalogr Clin Neurophysiol—Electromyogr Mot Control, 101 (1996) 181–183. https://doi.org/10.1016/0924-980X(96)00316-5.

    Article  Google Scholar 

  35. A. Kumar, A. Parey and P.K. Kankar, Polymer gear fault classification using EMD-DWT analysis based on combination of entropy and hjorth features 60 (2022) 339–346.

  36. H. Cai, J. Han, Y. Chen, X. Sha, Z. Wang, B. Hu et al., A pervasive approach to EEG-based depression detection. Complexity (2018). https://doi.org/10.1155/2018/5238028.

    Article  Google Scholar 

  37. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Snin, Q. Zheng et al., The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci, 454 (1998) 903–995. https://doi.org/10.1098/rspa.1998.0193.

    Article  ADS  Google Scholar 

  38. J. Gilles, Empirical wavelet transform. IEEE Trans Signal Process, 61 (2013) 3999–4010. https://doi.org/10.1109/TSP.2013.2265222.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J. Prakash and P.K. Kankar, Health prediction of hydraulic cooling circuit using deep neural network with ensemble feature ranking technique. Measurement, 151 (2019) 107225. https://doi.org/10.1016/j.measurement.2019.107225.

    Article  Google Scholar 

  40. J. Prakash and P.K. Kankar, Determining the working behaviour of hydraulic system using support vector machine. Lect Notes Mech Eng (2021). https://doi.org/10.1007/978-981-15-8025-3_74.

    Article  Google Scholar 

  41. D. Han, N. Zhao and P. Shi, Gear fault feature extraction and diagnosis method under different load excitation based on EMD, PSO-SVM and fractal box dimension. J Mech Sci Technol, 33 (2019) 487–494. https://doi.org/10.1007/s12206-019-0101-z.

    Article  Google Scholar 

  42. D.S. Ramteke, A. Parey and R.B. Pachori, Automated gear fault detection of micron level wear in bevel gears using variational mode decomposition. J Mech Sci Technol, 33 (2019) 5769–5777. https://doi.org/10.1007/s12206-019-1123-2.

    Article  Google Scholar 

  43. W.H. Li, K. Ding, T.L. Shi and G.L. Liao, Gear fault classification using kernel discriminant analysis. Key Eng Mater, 321–323 (2006) 1556–1559. https://doi.org/10.4028/www.scientific.net/kem.321-323.1556.

    Article  Google Scholar 

  44. J. Pacheco-Chérrez, J.A. Fortoul-Díaz, F. Cortés-Santacruz, L. María Aloso-Valerdi and D.I. Ibarra-Zarate, Bearing fault detection with vibration and acoustic signals: comparison among different machine leaning classification methods. Eng Fail Anal (2022). https://doi.org/10.1016/j.engfailanal.2022.106515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Parey, A. & Kankar, P.K. Supervised Machine Learning Based Approach for Early Fault Detection in Polymer Gears Using Vibration Signals. MAPAN 38, 383–394 (2023). https://doi.org/10.1007/s12647-022-00608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00608-8

Keywords

Navigation