Skip to main content
Log in

Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agterberg MJ, Versnel H, de Groot JC, Smoorenburg GF, Albers FW, Klis SF (2008) Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hear Res 244:25–34

    Article  CAS  PubMed  Google Scholar 

  • Barclay M, Ryan AF, Housley GD (2011) Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibas A, Hornigold R, Liang J, Michaels L, Anagnostopoulou S, Wright A (2006) The development of the spiral ganglion in the human foetus. Folia Morphol (Warsz) 65:140–144

    CAS  Google Scholar 

  • Bongartz EV, Rettinger J, Hausmann R (2010) Aminoglycoside block of P2X2 receptors heterologously expressed in Xenopus laevis oocytes. Purinergic Signal 6:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier E, Pujol R (1980) Supra-normal sensitivity to ototoxic antibiotic of the developing rat cochlea. Arch Otorhinolaryngol 226:129–133

    Article  CAS  PubMed  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677

    Article  CAS  PubMed  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA et al (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  PubMed  Google Scholar 

  • Dai CF, Mangiardi D, Cotanche DA, Steyger PS (2006) Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 213:64–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    CAS  PubMed  Google Scholar 

  • Deng L, Ding D, Su J, Manohar S, Salvi R (2013) Salicylate selectively kills cochlear spiral ganglion neurons by paradoxically up-regulating superoxide. Neurotox Res

  • Ding D, Salvi R (2005) Review of cellular changes in the cochlea due to aminoglycoside antibiotics. The Volta Review 105:407–438

    Google Scholar 

  • Ding D, Stracher A, Salvi RJ (2002) Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res 164:115–126

    Article  CAS  PubMed  Google Scholar 

  • Ding D, McFadden SL, Browne RW, Salvi RJ (2003) Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells. Hear Res 185:90–96

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Jiang H, Salvi RJ (2010a) Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid. Hear Res 259:16–23

    Article  CAS  PubMed  Google Scholar 

  • Ding D, Tao J, Qu Y, Qi W, Salvi R (2010b) Science of the inner ear. Beijing Chinese Science and Technology Publishing Co.

  • Ding D, Jiang H, Fu Y, Salvi R, Someya S, Tanokura M (2012) Ototoxic effects of carboplatin in organotypic cultures in chinchillas and rats. J Otol 7:92–101

    Article  Google Scholar 

  • Ding D, Qi W, Yu D, Jiang H, Han C, Kim MJ et al (2013a) Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures. PLoS One 8:e79817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Jiang H, Chen GD, Longo-Guess C, Muthaiah VP, Tian C et al (2016) N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice. Aging (Albany NY) 8:730–750

    Article  Google Scholar 

  • Dodson HC, Mohuiddin A (2000) Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol 29:525–537

    Article  CAS  PubMed  Google Scholar 

  • Esterberg R, Hailey DW, Coffin AB, Raible DW, Rubel EW (2013) Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 33:7513–7525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan GR, Yin ZD, Sun Y, Chen S, Zhang WJ, Huang X et al (2013) Reversible neurotoxicity of kanamycin on dorsal cochlear nucleus. Brain Res 1502:30–46

    Article  CAS  PubMed  Google Scholar 

  • Fischel-Ghodsian N (1998) Mitochondrial mutations and hearing loss: paradigm for mitochondrial genetics. Am J Hum Genet 62:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froud KE, Wong AC, Cederholm JM, Klugmann M, Sandow SL, Julien JP et al (2015) Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat Commun 6:7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Ding D, Wei L, Jiang H, Salvi R (2013) Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. Biomed Res Int 2013:628064

    PubMed  PubMed Central  Google Scholar 

  • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025

    CAS  PubMed  Google Scholar 

  • Garcia-Anoveros J, Duggan A (2007) TRPA1 in auditory and nociceptive organs

  • Hashino E, Salvi RJ (1997) Regenerated hair cells exhibit a transient resistance to aminoglycoside toxicity. Brain Res 720:172–182

    Article  Google Scholar 

  • Hashino E, Shero M, Salvi RJ. (1999). Lyosomal targeting and accumulation of aminoglycoside antibiotics in cochlear hair cells. Am Soc Cell Biol

  • Henley CM, Weatherly RA, Martin GK, Lonsbury-Martin B (1996) Sensitive developmental periods for kanamycin ototoxic effects on distortion-product otoacoustic emissions. Hear Res 98:93–103

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Hockenbery DM, Rubel EW (1997) Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hearing Res 104:1–14

    Article  CAS  Google Scholar 

  • Imamura S, Adams JC (2003) Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J Assoc Res Otolaryngol 4:176–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura S, Adams JC (2005) Selective gentamicin uptake by cytochemical subpopulations of guinea-pig geniculate ganglion cells. Neuroscience 131:125–133

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y (2008) Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 240:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarlebark LE, Housley GD, Thorne PR (2000) Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea. J Comp Neurol 421:289–301

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Kim LS, Hur D, Bae WY, Kim JR, Lee JH (2010) Gentamicin-induced spiral ganglion cell death: apoptosis mediated by ROS and the JNK signaling pathway. Acta Otolaryngol 130:670–678

    Article  CAS  PubMed  Google Scholar 

  • Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 280:857–860

    Article  CAS  PubMed  Google Scholar 

  • Kong WJ, Yin ZD, Fan GR, Li D, Huang X (2010) Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig. Brain Res 1331:28–38

    Article  CAS  PubMed  Google Scholar 

  • Kopelovich JC, Cagaanan AP, Miller CA, Abbas PJ, Green SH (2013) Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo. Otolaryngol Head Neck Surg 149:745–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res

  • Lalwani AK, Han JJ, Castelein CM, Carvalho GJ, Mhatre AN (2002) In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult. Laryngoscope 112:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Landry TG, Wise AK, Fallon JB, Shepherd RK (2011) Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment. Hear Res 282:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang H, Schulte BA, Schmiedt RA (2005) Ouabain induces apoptotic cell death in type I spiral ganglion neurons, but not type II neurons. J Assoc Res Otolaryngol 6:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautermann J, Crann SA, McLaren J, Schacht J (1997) Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise. Hear Res 114:75–82

    Article  CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT, Hetherington AM, Stakhovskaya O (2011) Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol 519:1526–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda K, Ueda Y, Doi T, Tono T, Haruta A, Toyama K et al (1999) Increase in glutamate-aspartate transporter (GLAST) mRNA during kanamycin-induced cochlear insult in rats. Hear Res 133:10–16

    Article  CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Jiang H, Woo JM, Salvi RJ (2002) Chinchilla models of selective cochlear hair cell loss. Hear Res 174:230–238

    Article  PubMed  Google Scholar 

  • McFadden SL, Ding D, Jiang H, Salvi RJ (2004) Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res 997:40–51

    Article  CAS  PubMed  Google Scholar 

  • Pittinger C, Adamson R (1972) Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol 12:169–184

    Article  CAS  PubMed  Google Scholar 

  • Raisinghani M, Premkumar LS (2005) Block of native and cloned vanilloid receptor 1 (TRPV1) by aminoglycoside antibiotics. Pain 113:123–133

    Article  CAS  PubMed  Google Scholar 

  • Richardson GP, Forge A, Kros CJ, Fleming J, Brown SD, Steel KP (1997) Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci 17:9506–9519

    CAS  PubMed  Google Scholar 

  • Sakuraba M, Murata J, Teruyama R, Kamiya K, Yamaguchi J, Okano H et al (2014) Spatiotemporal expression of TRPM4 in the mouse cochlea. J Neurosci Res 92:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha SH, Schacht J (2000) Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant. Hearing Res 142:34–40

    Article  CAS  Google Scholar 

  • Sha SH, Taylor R, Forge A, Schacht J (2001a) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sha SH, Zajic G, Epstein CJ, Schacht J (2001b) Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss. Audiol Neurootol 6:117–123

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Martin RL (1995) Onset of ototoxicity in the cat is related to onset of auditory function. Hear Res 92:131–142

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Coco A, Epp SB (2008) Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 242:100–109

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1969) Innervation patterns in the organ of corti of the cat. Acta Otolaryngol 67:239–254

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Archiv Klinische Exper Ohren Nasen Kehlkopfheilkunde 200:275–291

    Article  CAS  Google Scholar 

  • Spoendlin H (1982) The innervation of the outer hair cell system. Am J Otol 3:274–278

    CAS  PubMed  Google Scholar 

  • Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 43:25–38

    Article  CAS  PubMed  Google Scholar 

  • Staecker H, Galinovic-Schwartz V, Liu W, Lefebvre P, Kopke R, Malgrange B et al (1996) The role of the neurotrophins in maturation and maintenance of postnatal auditory innervation. Am J Otol 17:486–492

    CAS  PubMed  Google Scholar 

  • Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6:136–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA et al (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750

    Article  PubMed  Google Scholar 

  • Wei L, Ding D, Salvi R (2010) Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 168:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SA, Shepherd RK, Chen Y, Clark GM (1993) Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear Res 70:205–215

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Li G, Liu N, Huang LY (2011) Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 7:60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Ding D, Wang F, Jiang H, Sun H, Salvi R (2014) Pattern of hair cell loss and delayed peripheral neuron degeneration in inner ear by a high-dose intratympanic gentamicin. Journal of Otology 9:126–135

    Article  Google Scholar 

  • Zheng J, Dai C, Steyger PS, Kim Y, Vass Z, Ren T et al (2003) Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. J Neurophysiol 90:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucca G, Vega R, Botta L, Perez ME, Valli P, Soto E (1992) Streptomycin blocks the afferent synapse of the isolated semicircular canals of the frog. Hearing Res 59:70–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work supported in part by grant from National Institutes of Occupational Safety and Health (R01OH010235)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Salvi.

Ethics declarations

Conflict of Interest

Author RS received a grant from Anida Inc., is a paid consultant for CilCare, and serves as unpaid member of the scientific advisory board of Hyperacusis Research, a nonprofit organization. None of these activities are related to the results contained in the manuscript. The authors declare that they do not have any financial conflict of interest with any of the funding agencies supporting this research.

Research Involving Animals

The experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the University at Buffalo, NY, USA, and conform to the guidelines from the National Institutes of Health, MD, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Ding, D., Sun, H. et al. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 32, 603–613 (2017). https://doi.org/10.1007/s12640-017-9773-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9773-2

Keywords

Navigation