Skip to main content

Advertisement

Log in

Transport of BMAA into Neurons and Astrocytes by System xc-

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The study of the mechanism of β-N-methylamino-l-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-d-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system xc-) were involved in the toxicity. The effects on system xc- are of particular interest. System xc- mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system xc- can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system xc-. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system xc-. The fact that BMAA is transported by system xc- also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albano R, Liu X, Lobner D (2013) Regulation of system xc- in the SOD1-G93A mouse model of ALS. Exp Neurol 250:69–73. doi:10.1016/j.expneurol.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    CAS  PubMed  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376

    CAS  PubMed  Google Scholar 

  • Carriedo SG, Yin HZ, Lamberta R, Weiss JH (1995) In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+ dependent. Neuroreport 6:945–948

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368

    CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    Article  CAS  PubMed  Google Scholar 

  • Domercq M, Sanchez-Gomez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556. doi:10.4049/jimmunol.178.10.6549

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Bruno VMG, Amagasu SM, Giffard RG (1995) Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15:4545–4555

    CAS  PubMed  Google Scholar 

  • Dunlop RA, Cox PA, Banack SA, Rodgers KJ (2013) The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS One 8:e75376. doi:10.1371/journal.pone.0075376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ (2007) System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 27:10094–10105

    Article  CAS  PubMed  Google Scholar 

  • Glover WB, Mash DC, Murch SJ (2014) The natural non-protein amino acid N-b-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids 46:2553–2559. doi:10.1007/s00726-014-1812-1

    Article  CAS  PubMed  Google Scholar 

  • He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ (2015) Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia 63:1568–1580. doi:10.1002/glia.22828

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackman NA, Uliasz TF, Hewett JA, Hewett SJ (2010) Regulation of system x(c)(−) activity and expression in astrocytes by interleukin-1β: implications for hypoxic neuronal injury. Glia 58:1806–1815. doi:10.1002/glia.21050

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlsson O, Lindquist NG, Brittebo EB, Roman E (2009) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (beta-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 109:286–295. doi:10.1093/toxsci/kfp062

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Rush T, Zapata J, Lobner D (2009) Beta-N-methylamino-l-alanine induces oxidative stress and glutamate release through action on system xc(−). Exp Neurol 217:429–433. doi:10.1016/j.expneurol.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Rush T, Ciske J, Lobner D (2010) Selective death of cholinergic neurons induced by beta-methylamino-L-alanine. Neuroreport 21:55–58. doi:10.1097/WNR.0b013e328333dfd5

    Article  CAS  PubMed  Google Scholar 

  • Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 96:147–152

    Article  CAS  PubMed  Google Scholar 

  • Lobner D, Piana PM, Salous AK, Peoples RW (2007) Beta-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25:360–366. doi:10.1016/j.nbd.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  • Massie A, Schallier A, Mertens B et al (2008) Time-dependent changes in striatal xCT protein expression in hemi-Parkinson rats. Neuroreport 19:1589–1592. doi:10.1097/WNR.0b013e328312181c

    Article  CAS  PubMed  Google Scholar 

  • Massie A, Schallier A, Kim SW et al (2011) Dopaminergic neurons of system x(c)-deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. FASEB J 25:1359–1369. doi:10.1096/fj.10-177212

    Article  CAS  PubMed  Google Scholar 

  • Mesci P, Zaïdi S, Lobsiger CS et al (2015) System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice. Brain 138:53–68. doi:10.1093/brain/awu312

    Article  PubMed  Google Scholar 

  • Miyamoto M, Murphy TH, Schnaar RL, Coyle JT (1989) Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250:1132–1140

    CAS  PubMed  Google Scholar 

  • Miyazaki I, Murakami S, Torigoe N, Kitamura Y, Asanuma M (2016) Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice. J Neurochem 136:194–204. doi:10.1111/jnc.13405

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4:1624–1633

    CAS  PubMed  Google Scholar 

  • Pauly K, Fritz K, Furey A, Lobner D (2011) Insulin-like growth factor 1 and transforming growth factor-β stimulate cystine/glutamate exchange activity in dental pulp cells. J Endod 37:943–947. doi:10.1016/j.joen.2011.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Piani D, Fontana A (1994) Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent cytotoxicity to neurons. J Immunol 152:3578–3585

    CAS  PubMed  Google Scholar 

  • Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M (2006) System xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J Neurosci 26:3345–3356. doi:10.1523/JNEUROSCI.5186-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Rao SD, Banack SA, Cox PA, Weiss JH (2006) BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp Neurol 201:244–252. doi:10.1016/j.expneurol.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994) Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J Neurosci 14:4385–4392

    CAS  PubMed  Google Scholar 

  • Ross SM, Seelig M, Spencer PS (1987) Specific antagonism of excitotoxic action of ‘uncommon’ amino acids assayed in organotypic mouse cortical cultures. Brain Res 425:120–127

    Article  CAS  PubMed  Google Scholar 

  • Rush T, Liu XQ, Hjelmhaug J, Lobner D (2010) Mechanisms of chlorpyrifos and diazinon induced neurotoxicity in cortical culture. Neuroscience 166:899–906. doi:10.1016/j.neuroscience.2010.01.025

    Article  CAS  PubMed  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  CAS  PubMed  Google Scholar 

  • Schallier A, Smolders I, Van Dam D et al (2011) Region- and age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer’s disease. J Alzheimers Dis 24:287–300. doi:10.3233/JAD-2011-101005

    CAS  PubMed  Google Scholar 

  • Schwartz JP, Wilson DJ (1992) Preparation and characterization of type 1 astrocytes cultured from adult rat cortex, cerebellum, and striatum. Glia 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  CAS  PubMed  Google Scholar 

  • Smith QR, Nagura H, Takada Y, Duncan MW (1992) Facilitated transport of the neurotoxin, beta-N-methylamino-L-alanine, across the blood-brain barrier. J Neurochem 58:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Weiss JH, Koh JY, Choi DW (1989) Neurotoxicity of beta-N-methylamino-L-alanine (BMAA) and beta-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res 497:64–71

    Article  CAS  PubMed  Google Scholar 

  • Yin HZ, Turetsky D, Choi DW, Weiss JH (1994) Cortical neurones with Ca2+ permeable AMPA/kainate channels display distinct receptor immunoreactivity and are GABAergic. Neurobiol Dis 1:43–49

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Lobner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, R., Lobner, D. Transport of BMAA into Neurons and Astrocytes by System xc-. Neurotox Res 33, 1–5 (2018). https://doi.org/10.1007/s12640-017-9739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9739-4

Keywords

Navigation