Skip to main content

Advertisement

Log in

Effects of Antidepressants on DSP4/CPT-Induced DNA Damage Response in Neuroblastoma SH-SY5Y Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT) induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Basma AN, Morris EJ, Nicklas WJ, Geller HM (1995) L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 64:825–832

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder–a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–475

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Kapczinski F, Andreazza AC et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817

    Article  CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP, Hauser DL (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1:256–262

    Article  CAS  PubMed  Google Scholar 

  • Briley M, Moret C (1993) Neurobiological mechanisms involved in antidepressant therapies. Clin Neuropharmacol 16:387–400

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Jahanshahi M (1995) Depression in Parkinson’s disease: a psychosocial viewpoint. Adv Neurol 65:61–84

    CAS  PubMed  Google Scholar 

  • Brummelte S, Galea LA (2010) Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 168:680–690

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Kanai S, Nokubo M, Kitani K (1991) (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48:517–521

    Article  CAS  PubMed  Google Scholar 

  • Chesnokova V, Pechnick RN (2008) Antidepressants and Cdk inhibitors: releasing the brake on neurogenesis? Cell Cycle 7:2321–2326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30:127–135

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578

    Article  CAS  PubMed  Google Scholar 

  • Chiou SH, Ku HH, Tsai TH, Lin HL, Chen LH, Chien CS, Ho LL, Lee CH, Chang YL (2006) Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway. Br J Pharmacol 148:587–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi HJ, Lee SY, Cho Y, Hwang O (2005) Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson’s disease. Neurochem Int 46:329–335

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Holmes EH, Greene TG, Liu PK (2000) Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J 14:955–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Masterman DL (1999) Depression in patients with Parkinson’s disease. Int J Geriatr Psychiatry 14:711–718

    Article  CAS  PubMed  Google Scholar 

  • Currais A, Hortobagyi T, Soriano S (2009) The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging 1:363–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doi K (2011) Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 36:695–712

    Article  CAS  PubMed  Google Scholar 

  • Dooley DJ, Heal DJ, Goodwin GM (1987) Repeated electroconvulsive shock prevents increased neocortical beta 1-adrenoceptor binding after DSP-4 treatment in rats. Eur J Pharmacol 134:333–337

    Article  CAS  PubMed  Google Scholar 

  • Drzyzga LR, Marcinowska A, Obuchowicz E (2009) Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 79:248–257

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Epp JR, Beasley CL, Galea LA (2013) Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure. Neuropsychopharmacology 38:2297–2306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisar Z, Hroudova J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett 31:645–656

    CAS  PubMed  Google Scholar 

  • Flint MS, Baum A, Chambers WH, Jenkins FJ (2007) Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology 32:470–479

    Article  CAS  PubMed  Google Scholar 

  • Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2’-deoxyguanosine in clinical depression. Psychosom Med 68:1–7

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Andreazza AC, Kunz M, Gomes FA, Quevedo J, Salvador M, Goncalves CA, Kapczinski F (2007) Increased oxidative stress and DNA damage in bipolar disorder: a twin-case report. Prog Neuropsychopharmacol Biol Psychiatry 31:283–285

    Article  CAS  PubMed  Google Scholar 

  • Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980–3985

    Article  CAS  PubMed  Google Scholar 

  • Geddes JR, Cipriani A (2004) Selective serotonin reuptake inhibitors. BMJ 329:809–810

    Article  PubMed Central  PubMed  Google Scholar 

  • German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676

    Article  CAS  PubMed  Google Scholar 

  • Gidron Y, Russ K, Tissarchondou H, Warner J (2006) The relation between psychological factors and DNA-damage: a critical review. Biol Psychol 72:291–304

    Article  PubMed  Google Scholar 

  • Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151:737–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    CAS  PubMed  Google Scholar 

  • Green AD, Galea LA (2008) Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy. Horm Behav 54:203–211

    Article  CAS  PubMed  Google Scholar 

  • Hara MR, Kovacs JJ, Whalen EJ et al (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477:349–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heneka MT, Ramanathan M, Jacobs AH et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26:1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271:2050–2055

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Xia Z (2000) Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp 60:531–545

    CAS  Google Scholar 

  • Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M (2008) Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res 1196:53–58

    Article  CAS  PubMed  Google Scholar 

  • Howard BD, Cho AK, Zhang MB, Koide M, Lin S (1990) Covalent labeling of the cocaine-sensitive catecholamine transporter. J Neurosci Res 26:149–158

    Article  CAS  PubMed  Google Scholar 

  • Irie M, Asami S, Nagata S, Miyata M, Kasai H (2000) Classical conditioning of oxidative DNA damage in rats. Neurosci Lett 288:13–16

    Article  CAS  PubMed  Google Scholar 

  • Jantas D, Krawczyk S, Lason W (2014) The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox Res 25:208–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44:S72–S84

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94:166–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen A, Krogh J, Miskowiak K et al (2013) Systemic oxidatively generated DNA/RNA damage in clinical depression: associations to symptom severity and response to electroconvulsive therapy. J Affect Disord 149(1):355–362

    Article  CAS  PubMed  Google Scholar 

  • Kadioglu E, Sardas S, Aslan S, Isik E, Esat Karakaya A (2004) Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer’s disease. Biomarkers 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kennedy S, Holt A, Baker G (2010) Monoamine oxidase inhibitor. In: FJ, Preskorn SH, Stanga CY, Ross R (eds) Antidepressants: past, present and future. Springer, Heidelberg, pp. 210–229

  • Kim D, Tsai LH (2009) Linking cell cycle reentry and DNA damage in neurodegeneration. Ann N Y Acad Sci 1170:674–679

    Article  CAS  PubMed  Google Scholar 

  • Knoll J (1989) The pharmacology of selegiline ((-)deprenyl). New aspects. Acta Neurol Scand Suppl 126:83–91

    Article  CAS  PubMed  Google Scholar 

  • Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J, Bossers K (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS ONE 8:e63862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koshimura K, Tanaka J, Murakami Y, Kato Y (2000) Effects of dopamine and L-DOPA on survival of PC12 cells. J Neurosci Res 62:112–119

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Schwartz EI (2008) DNA damage response and neuroprotection. Front Biosci 13:2504–2515

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Wilson DM 3rd (2008) The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 82:539–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagace DC, Fischer SJ, Eisch AJ (2007) Gender and endogenous levels of estradiol do not influence adult hippocampal neurogenesis in mice. Hippocampus 17:175–180

    Article  CAS  PubMed  Google Scholar 

  • Lai CT, Yu PH (1997) R(-)-deprenyl potentiates dopamine-induced cytotoxicity toward catecholaminergic neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 142:186–191

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Lyketsos CG (2003) Depression in Alzheimer’s disease: heterogeneity and related issues. Biol Psychiatry 54:353–362

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Shin SY, Kim S, Choo J, Lee YH (2006) Suppression of PTEN expression during aggregation with retinoic acid in P19 mouse embryonal carcinoma cells. Biochem Biophys Res Commun 347:715–722

    Article  CAS  PubMed  Google Scholar 

  • Leskiewicz M, Jantas D, Regulska M, Kaczanowska J, Basta-Kaim A, Budziszewska B, Kubera M, Lason W (2013) Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: a involvement of extracellular regulated kinase (ERK1/2). Neurochem Int 63:354–362

    Article  CAS  PubMed  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lombet A, Zujovic V, Kandouz M, Billardon C, Carvajal-Gonzalez S, Gompel A, Rostene W (2001) Resistance to induced apoptosis in the human neuroblastoma cell line SK-N-SH in relation to neuronal differentiation. Role of Bcl-2 protein family. Eur J Biochem 268:1352–1362

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    Article  CAS  PubMed  Google Scholar 

  • Magyar K, Haberle D (1999) Neuroprotective and neuronal rescue effects of selegiline: review. Neurobiol (Bp) 7:175–190

    CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO, Hawkes J (1983) The pathology of the human locus ceruleus. Clin Neuropathol 2:1–7

    CAS  PubMed  Google Scholar 

  • Martin LJ (2008) DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol 67:377–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara K, Senda T, Uezono T, Awaya T, Ogawa S, Chiba K, Shimizu K, Hayase N, Kimura K (2001) L-Deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP(+) and beta-carbolinium: a microdialysis study in rats. Neurosci Lett 302:65–68

    Article  CAS  PubMed  Google Scholar 

  • McKernan DP, Dinan TG, Cryan JF (2009) “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 88:246–263

    Article  CAS  PubMed  Google Scholar 

  • McNamara P, Durso R (2006) Neuropharmacological treatment of mental dysfunction in Parkinson’s disease. Behav Neurol 17:43–51

    Article  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  • Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134:757–770

    Article  CAS  PubMed  Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234

    Article  CAS  PubMed  Google Scholar 

  • Nahon E, Israelson A, Abu-Hamad S, Varda SB (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579:5105–5110

    Article  CAS  PubMed  Google Scholar 

  • Paillaud E, Costa S, Fages C, Plassat JL, Rochette-Egly C, Monville C, Tardy M (2002) Retinoic acid increases proliferation rate of GL-15 glioma cells, involving activation of STAT-3 transcription factor. J Neurosci Res 67:670–679

    Article  CAS  PubMed  Google Scholar 

  • Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci U S A 105:1358–1363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pechnick RN, Zonis S, Wawrowsky K, Cosgayon R, Farrokhi C, Lacayo L, Chesnokova V (2011) Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS ONE 6:e27290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prieto M, Giralt MT (2001) Effects of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on alpha2-adrenoceptors which regulate the synthesis and release of noradrenaline in the rat brain. Pharmacol Toxicol 88:152–158

    Article  CAS  PubMed  Google Scholar 

  • Ransom RW, Waggaman LA, Cho AK (1985) Interaction of xylamine with peripheral sympathetic neurons. Life Sci 37:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361

    Article  CAS  PubMed  Google Scholar 

  • Rommelfanger KS, Weinshenker D (2007) Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem Pharmacol 74:177–190

    Article  CAS  PubMed  Google Scholar 

  • Ross SB (1976) Long-term effects of N-2-chlorethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart. Br J Pharmacol 58:521–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rybka J, Kedziora-Kornatowska K, Banas-Lezanska P, Majsterek I, Carvalho LA, Cattaneo A, Anacker C, Kedziora J (2013) Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic Biol Med 63C:187–194

    Article  CAS  Google Scholar 

  • Sairanen M, O’Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368–374

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G (2012) Antioxidants as antidepressants: fact or fiction? CNS Drugs 26:477–490

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Article  CAS  PubMed  Google Scholar 

  • Seniuk NA, Henderson JT, Tatton WG, Roder JC (1994) Increased CNTF gene expression in process-bearing astrocytes following injury is augmented by R(-)-deprenyl. J Neurosci Res 37:278–286

    Article  CAS  PubMed  Google Scholar 

  • Serrano MA, Li Z, Dangeti M, Musich PR, Patrick S, Roginskaya M, Cartwright B, Zou Y (2013) DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 39(19):2452–2462

    Article  CAS  Google Scholar 

  • Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF (2003) Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity. Br J Cancer 89:1979–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004) Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson’s disease. Behav Brain Res 151:191–199

    Article  CAS  PubMed  Google Scholar 

  • Stansley BJ, Yamamoto BK (2013) L-dopa-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology 67:243–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. NeuroReport 5:2529–2533

    Article  CAS  PubMed  Google Scholar 

  • Taler M, Gil-Ad I, Lomnitski L, Korov I, Baharav E, Bar M, Zolokov A, Weizman A (2007) Immunomodulatory effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. Eur Neuropsychopharmacol 17:774–780

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30:666–672

    Article  CAS  PubMed  Google Scholar 

  • Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, Storm D, Duman RS (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20:4030–4036

    CAS  PubMed  Google Scholar 

  • Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248

    Article  CAS  PubMed  Google Scholar 

  • Uday Bhanu M, Kondapi AK (2010) Neurotoxic activity of a topoisomerase-I inhibitor, camptothecin, in cultured cerebellar granule neurons. Neurotoxicology 31:730–737

    Article  CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vizuete ML, Steffen V, Ayala A, Cano J, Machado A (1993) Protective effect of deprenyl against 1-methyl-4-phenylpyridinium neurotoxicity in rat striatum. Neurosci Lett 152:113–116

    Article  CAS  PubMed  Google Scholar 

  • Wadia JS, Chalmers-Redman RM, Ju WJ, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J Neurosci 18:932–947

    CAS  PubMed  Google Scholar 

  • Wang Y, Musich PR, Serrano MA, Zou Y, Zhu MY (2013) Neurotoxin DSP4 induces persistent DNA damage in neuroblastoma cells. In: 15th annual midwest DNA repair symposium, Kentucky

  • Wang Y, Musich PR, Serrano MA, Zou Y, Zhang J, Zhu MY (2014) Effects of DSP4 on the noradrenergic phenotypes and its potential molecular mechanisms in SH-SY5Y cells. Neurotox Res 25:193–207

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Musich PR, Cui K, Zou Y, Zhu MY (2015) Neurotoxin-induced DNA damage is persistent in SH-SY5Y cells and LC neurons. Neurotox Res 27(4):368–383

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345

    Article  CAS  PubMed  Google Scholar 

  • Winkler H (1976) The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1:65–80

    Article  CAS  PubMed  Google Scholar 

  • Wu RM, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP + in vivo. Eur J Pharmacol 243:241–247

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Steven Richardson J, Li XM (2003) Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28:53–62

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Tamim H, Shapiro S, Stang MR, Collet JP (2006) Use of antidepressants and risk of colorectal cancer: a nested case-control study. Lancet Oncol 7:301–308

    Article  CAS  PubMed  Google Scholar 

  • Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  • Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Zhou H, Wilson BC, Shi JS, Hong JS, Gao HM (2012) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat Disord 18(Suppl 1):S213–S217

    Article  PubMed Central  PubMed  Google Scholar 

  • Zubenko GS, Moossy J (1988) Major depression in primary dementia. Clinical and neuropathologic correlates. Arch Neurol 45:1182–1186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant MH080323.

Conflict of interest

The authors declare no conflict of interest regarding the work reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Yang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hilton, B.A., Cui, K. et al. Effects of Antidepressants on DSP4/CPT-Induced DNA Damage Response in Neuroblastoma SH-SY5Y Cells. Neurotox Res 28, 154–170 (2015). https://doi.org/10.1007/s12640-015-9534-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9534-z

Keywords

Navigation