Skip to main content

Advertisement

Log in

Interaction of apigenin-7-O-glucoside with pyrimethamine against Toxoplasma gondii growth

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Apigenin-7-O-glucoside, a flavonoid glucoside known to inhibit cancer cell growth, fungi growth, both intra and extracellular reactive oxygen species generation, causing cell arrest and damage to the plasma membrane, was tested alone or in combination with a dihydrofolate inhibitor (pyrimethamine) against Toxoplasma gondii (T. gondii) growth. The anti-T. gondii activity was carried out using a high throughput antiparasitic drug screening cell-based assay known as 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt (WST-8) and fluorescence plate reader. The 50% effective concentration inhibition and 95% confidence interval values for individual and combination treatments against T. gondii were 0.80 (0.38–1.29) µg/mL, 1.05 (0.275–2.029) µg/mL, and 0.40 (0–1.06) µg/mL for apigenin-7-O-glucoside, pyrimethamine, and apigenin-7-O-glucoside plus pyrimethamine, respectively. Interestingly, the apigenin-7-O-glucoside plus pyrimethamine combination showed an additive inhibition effect against T. gondii growth in vitro using the fractional inhibitory concentration index method. It was discovered that the apigenin-7-O-glucoside combination with pyrimethamine had a high selectivity index 62.5, which implies 62-fold inhibition activity against the parasite versus human foreskin fibroblast cell cytotoxicity. This new combination hit is novel and will have the potential for future effective, safe, and less costly anti-Toxoplasma drug development, if its in vivo activity shows similar findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abugri DA, Tiimob BJ, Apalangya VA, Pritchett G, McElhenney WH (2013) Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication. Food Chem 138(1):718–723

    CAS  PubMed  Google Scholar 

  • Abugri DA, Witola WH, Jaynes JM, Toufic N (2016) In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii. Exp Parasitol 164:12–19

    CAS  PubMed  Google Scholar 

  • Abugri DA, Witola WH, Jaynes JM (2017) In vitro antagonistic and indifferent activity of combination of 3-deoxyanthocyanidins against Toxoplasma gondii. Parasitol Res 116(12):3387–3400

    PubMed  Google Scholar 

  • Abugri DA, Witola WH, Russell AE, Troy RM (2018) In vitro activity of the interaction between taxifolin (dihydroquercetin) and pyrimethamine against Toxoplasma gondii. Chem Biol Drug Des 91(1):194–201

    CAS  PubMed  Google Scholar 

  • Adeyemi OS, Sugi T, Han Y, Kato K (2018) Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents. Parasitol Res 117(2):355–363

    PubMed  Google Scholar 

  • Andrews KT, Fisher G, Skinner-Adams TS (2014) Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 4(2):95–111

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK (2009) Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem 44(9):3388–3393

    CAS  PubMed  Google Scholar 

  • Center for Disease and Control and Prevention (CDC) (2018), https://www.cdc.gov/parasites/npi/. Accessed 12 July 2018

  • Choi W, Lee I (2018) Evaluation of anti-Toxoplasma gondii effect of ursolic acid as a novel toxoplasmosis inhibitor. Pharmaceuticals 11(2):43

    PubMed Central  Google Scholar 

  • Choi W, Jiang M, Chu J (2013) Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J Appl Biomed 11(1):15–26

    Google Scholar 

  • Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    CAS  PubMed  Google Scholar 

  • Dyer O (2015) Company reneges on promise to cut price of toxoplasmosis drug. BMJ 351:h6472

    PubMed  Google Scholar 

  • Emiliano YS, Almeida-Amaral EE (2018) Efficacy of apigenin and miltefosine combination therapy against experimental cutaneous leishmaniasis. J Nat Prod 81(8):1910–1913

    CAS  PubMed  Google Scholar 

  • Eumkeb G, Siriwong S, Thumanu K (2012a) Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J Photochem Photobiol B 117:247–253

    CAS  PubMed  Google Scholar 

  • Eumkeb G, Siriwong S, Phitaktim S, Rojtinnakorn N, Sakdarat S (2012b) Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J Appl Microbiol 112(1):55–64

    CAS  PubMed  Google Scholar 

  • Ferreira JF, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15(5):3135–3170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flegr J, Prandota J, Sovickova M, Israili ZH (2014) Toxoplasmosis- a global threat. Correlation of latent toxoplasmsosis with specific disease burden in a set of 88 countries. PLoS One 9(3):e90203

    PubMed  PubMed Central  Google Scholar 

  • Fomovska A, Huang Q, El Bissati K, Mui EJ, Witola WH, Cheng G, Zhou Y, Sommerville C, Roberts CW, Bettis S, Prigge ST (2012) Novel N-benzoyl-2-hydroxybenzamide disrupts unique parasite secretory pathway. Antimicrob Agents Chemother 56(5):2666–2682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginouves M, Carme B, Couppie P, Prevot G (2014) Comparison of tetrazolium salts assays for evaluation of drug activity against Leishmania spp. J Clin Microbiol 52(6):2131–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginouvès M, Simon S, Nacher M, Demar M, Carme B, Couppié P, Prévot G (2017) In vitro sensitivity of cutaneous leishmania promastigote isolates circulating in French guiana to a set of drugs. Am J Trop Med Hyg 96(5):1143–1150

    PubMed  PubMed Central  Google Scholar 

  • Gubbels MJ, Li C, Striepen B (2003) High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother 47(1):309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haverkos HW (1987) Assessment of therapy for toxoplasma encephalitis. Am J Med 82:907–914

    CAS  PubMed  Google Scholar 

  • https://www.pharmacist.com/article/martin-shkreli-prison-pyrimethamines-price-still-high. Accessed 1 Jan 2019

  • Hughes JM, Colley DG, Lopez A, Dietz VJ, Wilson M, Navin TR, Jones JL (2000) Preventing congenital toxoplasmosis. MMWR Recomm Rep 49(RR-2):57–75

    Google Scholar 

  • Iqbal K, Jamal Q, Iqbal J, Afreen MS (2017) Luteolin as a potent anti-leishmanial agent against intracellular Leishmania tropica parasite. Trop J Pharm Res 16(2):337–342

    CAS  Google Scholar 

  • Jeon YW, Suh YJ (2013) Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep 29(2):819–825

    CAS  PubMed  Google Scholar 

  • Khan AA, Slifer TR, Araujo FG, Remington JS (2001) Activity of gatifloxacin alone or in combination with pyrimethamine or gamma interferon against Toxoplasma gondii. Antimicrob Agents Chemother 45(1):48–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Bhat ZA (2012) Anti-anxiety activity of methanolic extracts of different parts of Angelica archangelica Linn. J Tradit Complement Med 2:235–241

    PubMed  PubMed Central  Google Scholar 

  • Lehane AM, Saliba KJ (2008) Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res Notes 1(1):26

    PubMed  PubMed Central  Google Scholar 

  • Li ZH, Li C, Szajnman SH, Rodriguez JB, Moreno SN (2017) Synergistic activity between statins and bisphosphonates against acute experimental toxoplasmosis. Antimicrob Agents Chemother 61(8):e02628-16

    PubMed  PubMed Central  Google Scholar 

  • McCarthy M (2015) Drug’s 5000% price rise puts spotlight on soaring US drug costs. BMJ 351:h5114

    PubMed  Google Scholar 

  • McFarland MM, Zach SJ, Wang X, Potluri LP, Neville AJ, Vennerstrom JL, Davis PH (2016) Review of experimental compounds demonstrating anti-toxoplasma activity. Antimicrob Agents Chemother 60(12):7017–7034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mead JR, McNair N (2006) Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol Lett 259(1):153–157

    CAS  PubMed  Google Scholar 

  • Mirzaalizadeh B, Sharif M, Daryani A, Ebrahimzadeh MA, Zargari M, Sarvi S, Mehrzadi S, Rahimi MT, Mirabediny Z, Golpour M, Montazeri M (2018) Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol 192:6–11

    CAS  PubMed  Google Scholar 

  • Neville AJ, Zach SJ, Wang X, Larson JJ, Judge AK, Davis LA, Vennerstrom JL, Davis PH (2015) Clinically available medicines demonstrating anti-Toxoplasma activity. Antimicrob Agents Chemother 59:7161–7169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oz HS (2017) Fetomaternal and pediatric toxoplasmosis. J Pediatric Infect Dis Soc 12(04):202–208

    Google Scholar 

  • Pillai S, Mahmud R, Lee WC, Perumal S (2012) Anti-parasitic activity of Myristica fragrans Houtt. essential oil against Toxoplasma gondii parasite. APCBEE Procedia 2:92–96

    CAS  Google Scholar 

  • Powers JL, Zhang X, Kim CY, Abugri DA, Witola WH (2017) Activity of green algae extracts against Toxoplasma gondii. Med Aromat Plants (Los Angels) 6(293):2167-0412

    Google Scholar 

  • Prusky D, Keen NT (1993) Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay. Plant Dis 77(2):114–119

    CAS  Google Scholar 

  • Ravanel P, Creuzet S, Tissut M (1990) Inhibitory effect of hydroxyflavones on the exogenous NADH dehydrogenase of plant mitochondrial inner membranes. Phytochemistry 29(2):441–445

    CAS  Google Scholar 

  • Sanfelice RA, da Silva SS, Bosqui LR, Miranda-Sapla MM, Barbosa BF, Silva RJ, Ferro EAV, Panagio LA, Navarro IT, Bordignon J, Conchon-Costa I (2017) Pravastatin and simvastatin inhibit the adhesion, replication and proliferation of Toxoplasma gondii (RH strain) in HeLa cells. Acta Trop 167:208–215

    CAS  PubMed  Google Scholar 

  • Siriwong S, Thumanu K, Hengpratom T, Eumkeb G (2015) Synergy and Mode of Action of Ceftazidime plus Quercetin or Luteolin on Streptococcus pyogenes. Evid Based Complement Alternat Med 2015:759459

    PubMed  PubMed Central  Google Scholar 

  • Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Vicentic JM, Popovic J, Grdadolnik SG, Markovic D, Sankovic-Babice S, Glamoclija J, Stevanovic M (2017) Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 16:795–807

    PubMed  PubMed Central  Google Scholar 

  • Szajnman SH, Galaka T, Li ZH, Li C, Howell NM, Chao MN, Striepen B, Muralidharan V, Moreno SN, Rodriguez JB (2017) In vitro and in vivo activities of sulfur-containing linear bisphosphonates against apicomplexan parasites. Antimicrob Agents Chemother 61(2):e01590-16

    PubMed  PubMed Central  Google Scholar 

  • Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50(4):1352–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M (1999) A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36(2):47–50

    CAS  Google Scholar 

  • United States Department of Agriculture (USDA) (2018) Salmonella and Toxoplasma gondii are the most costliest foodborne pathogens. Accessed 1 Jan 2019

  • Wang G, Gao M (2016) Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell. Asian Pac J Trop Med 9(1):63–66

    PubMed  Google Scholar 

Download references

Acknowledgements

We are truly grateful to Professor Emeritus Adriane G. Ludwick for her constructive comments that have improved the manuscript. In addition, the authors are thankful for the support of the RCMI core facility at Tuskegee University that was established with Grant Number G12MD007585-23 for supporting the cell-based assay acquisition.

Author information

Authors and Affiliations

Authors

Contributions

Both DAA and WHW conceived the present idea reported in this paper. DAA carried out the laboratory work, perform the Graph pad Prism analysis, and drafted the first manuscript. WHM provided the cell lines and proofread the whole manuscript.

Corresponding author

Correspondence to Daniel A. Abugri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abugri, D.A., Witola, W.H. Interaction of apigenin-7-O-glucoside with pyrimethamine against Toxoplasma gondii growth. J Parasit Dis 44, 221–229 (2020). https://doi.org/10.1007/s12639-019-01185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-019-01185-5

Keywords

Navigation