Skip to main content
Log in

Er2O3 doped zinc borosilicate glass substrate: Impact of doping to the structural, optical and surface plasmon resonance performance

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The optimization of glass substrate optical properties for enhanced biosensor sensitivity has recently blossomed into a major research focus, yielding remarkable progress. Nevertheless, attaining precise control over nanoscale morphologies and their light-altering abilities remains a formidable hurdle, necessitating the exploration of diverse strategies to overcome this issue. This study was conducted to investigate how Er2O3 doping affects the physical, optical structural and elastic properties of ZnO-SiO2-B2O3 glasses, which were created using the melt-quenching method. The samples were confirmed to be amorphous and glassy using XRD and FTIR techniques. Many researchers used ultrasonic waves to measure the longitudinal and shear velocities of glasses using the pulse-echo method. The measurements were taken at a temperature within the typical room range and a frequency of 5 MHz. The addition of Er2O3 as a dopant resulted in both decreasing and increasing trends in the longitudinal, Young, shear and bulk moduli. These observations suggest a potential correlation between the increase in acoustic impedance and the presence of bridging oxygen, which leads to stiffer and more compact glass structures. The optical band gap of the material decreased from 3.43 eV to 3.23 eV as the weight percentage of Er2O3 increased from 0.00 to 0.05 wt.%. Surface plasmon resonance was investigated using the Otto configuration. The observed wavelength shift, approximately 6 nm with a gold nanolayer coating in the SPR results, indicated an increase in wavelength with increasing Er2O3 content (0.01-0.05 wt.%). This highlights the potential of this glass substrate for various optical applications, including optical biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Peng F et al (2014) Silicon nanomaterials platform for bioimaging, biosensing and cancer therapy. Accounts of chemical research 47(2):612–623

    Article  CAS  PubMed  Google Scholar 

  2. Mohd Shofri MFS et al (2020) Phase Transformation, Optical and Emission Performance of Zinc Silicate Glass-Ceramics Phosphor Derived from the ZnO–B2O3–SLS Glass System. Applied Sciences 10(14):4940

    Article  Google Scholar 

  3. Al-Nidawi AJA, Matori KA, Zakaria A, Zaid MHM (2017) Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash. Results in physics 7:955–961

    Article  ADS  Google Scholar 

  4. Selomulya C, Jia X, Williams RA (2005) Direct prediction of structure and permeability of flocculated structures and sediments using 3D tomographic imaging. Chemical Engineering Research and Design 83(7):844–852

    Article  CAS  Google Scholar 

  5. Li NPD, Matthews H.K. Luo, Wright DS (2016) Novel properties and potential applications of functional ligand-modified polyoxotitanate cages. Chemical Communications 52(75):11180–11190

    Article  CAS  PubMed  Google Scholar 

  6. L.D. Pye, V.D. Fréchette and N.J. Kreidl (2012). Borate glasses: structure, properties, applications. Vol. 12. Springer Science and Business Media.

  7. Bahra N, Jaafar M, Iskandar S, Cheng S (2015) Effect of different concentrations of doped rare earth element on borate–silica oxide glass structure. Journal of Optoelectronics and Biomedical Materials 7(2):47–52

    Google Scholar 

  8. Balaram V (2019) Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers 10(4):1285–1303

    Article  CAS  Google Scholar 

  9. Takesue M, Hayashi H, Smith RL Jr (2009) Thermal and chemical methods for producing zinc silicate (willemite): a review. Progress in Crystal Growth and characterization of Materials 55(3–4):98–124

    Article  CAS  Google Scholar 

  10. Rajeswari R, Islavath N, Raghavender M, Giribabu L (2020) Recent progress and emerging applications of rare earth doped phosphor materials for dye-sensitized and perovskite solar cells: a review. The Chemical Record 20(2):65–88

    Article  CAS  PubMed  Google Scholar 

  11. J. Zhang et al., (2015). Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+–Yb3+ system. Light: Science and Applications, 4(1): p. e239-e239.

  12. Naczynski D et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature communications 4(1):1–10

    Article  Google Scholar 

  13. Yang et al (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wang Lu, Hasanzadeh Kafshgari M, Meunier M (2020) Optical properties and applications of plasmonic-metal nanoparticles. Advanced Functional Materials 30(51):2005400

    Article  CAS  Google Scholar 

  15. Deng S, Wang P, Yu X (2017) Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects. Sensors 17(12):2819

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. J.E. Shelby (2020). Introduction to glass science and technology. Royal society of chemistry.

  17. Ramdzan NSM et al (2019) Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik 178:802–812

    Article  ADS  CAS  Google Scholar 

  18. Henaish A et al (2022) Thermal and optical characteristics of synthesized sand/CeO2 glasses: experimental approach. Journal of Electronic Materials 51(5):2070–2076

    Article  ADS  CAS  Google Scholar 

  19. Alazoumi et al., (2017). SYNTHESIS AND ELASTIC PROPERTIES OF TERNARY ZnO-PbO-TeO2 GLASSES. Chalcogenide Letters, 14(8).

  20. R.P. Kooyman (2008). Physics of surface plasmon resonance. Handbook of Surface Plasmon Resonance, 1.

  21. Zampiva RYS et al (2018) Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake. Optical Materials 76:407–415

    Article  ADS  CAS  Google Scholar 

  22. M.N. Abd Azis (2021). Dielectric behavior in erbium-doped tellurite glass for potential high-energy capacitor.

  23. Zheng S et al (2013) The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses. Journal of Quantitative Spectroscopy and Radiative Transfer 120:44–51

    Article  ADS  CAS  Google Scholar 

  24. Eid AM, Farag MA, K. Abd-ullah Abd El-Rahman and M. Mohamed, (2016) Ultrasonic study on complex glass system doped with erbium oxide. Journal of Materials Research 31(4):495–505

    Article  ADS  CAS  Google Scholar 

  25. Umar S, Halimah M, Chan K, Latif A (2017) Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids 471:101–109

    Article  ADS  CAS  Google Scholar 

  26. Liu et al., (2018). Comprehensive studies of the Ag+ effect on borosilicate glass ceramics containing Ag nanoparticles and Er-doped hexagonal NaYF4 nanocrystals: morphology, structure and 2.7 μm emission. Nanophotonics, 7(5): p. 913-923.

  27. Lee K, Mun CW, Lai K.S. Ngai, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research 88:428–448

    Article  CAS  PubMed  Google Scholar 

  28. Babu B. Chandra, Buddhudu S (2013) Dielectric properties of willemite Zn2SiO4 nano powders by sol-gel method. Physics Procedia 49:128–136

    Article  ADS  CAS  Google Scholar 

  29. Effendy N et al (2017) Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials. Materials Express 7(1):59–65

    Article  CAS  Google Scholar 

  30. Zaid Matori, Zaid and Matori, (2016) Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. Journal of Non-Crystalline Solids 449:107–112

    Article  ADS  CAS  Google Scholar 

  31. S. Nayab et al., (2022). Erbium (III) ion‐doped borate‐based glasses for 1.53 μm broad band applications. Luminescence, 37(5): p. 784-790.

  32. Mahraz ZAS, Sahar M, Ghoshal S (2014) Band gap and polarizability of boro-tellurite glass: influence of erbium ions. Journal of Molecular Structure 1072:238–241

    Article  ADS  Google Scholar 

  33. U.S.a. Aliyu, et al (2021) Spectroscopic investigations of Er2O3 doped silica borotellurite glasses. Optical Materials 114:110987

    Article  Google Scholar 

  34. Umar S et al (2020) Structural, elastic and thermo-physical properties of Er2O3 nanoparticles doped bio-silicate borotellurite glasses. SN Applied Sciences 2(2):1–10

    Article  Google Scholar 

  35. Hathot SF, Jubier NJ, Hassani RH, Salim A (2021) Physical and elastic properties of TeO2-Gd2O3 glasses: Role of zinc oxide contents variation. Optik 247:167941

    Article  ADS  CAS  Google Scholar 

  36. Gaafar M, Marzouk S (2007) Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy. Physica B: Condensed Matter 388(1–2):294–302

    Article  ADS  CAS  Google Scholar 

  37. Adamu S et al (2022) Structural, prediction and simulation of elastic properties for tellurite based glass systems doped with nano and micro Eu2O3 particles via artificial neural network model. Journal of Materials Research and Technology 17:586–600

    Article  CAS  Google Scholar 

  38. Geidam I et al (2021) Thermo-physical and elastic properties of Bi2O3 doped silica borotellurite glasses. Optik 248:168201

    Article  ADS  CAS  Google Scholar 

  39. Shaaban KS, Yousef ES, Abdel Wahab E, Shaaban E, Mahmoud SA (2020) Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20–x) Na2O. Journal of Materials Engineering and Performance 29(7):4549–4558

    Article  ADS  CAS  Google Scholar 

  40. Acikgoz A et al (2022) Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: Role of CeO2 and Er2O3. Materials Science and Engineering: B 276:115519

    Article  CAS  Google Scholar 

  41. Halimah A, Asyikin S. Nazrin, Faznny M (2021) Influence of erbium oxide on structural, physical, elastic and luminescence properties of rice husk biosilicate zinc borotellurite glasses for laser application. Journal of Non-Crystalline Solids 553:120467

    Article  CAS  Google Scholar 

  42. Mhareb M et al (2020) The impact of barium oxide on physical, structural, optical and shielding features of sodium zinc borate glass. Journal of Non-Crystalline Solids 541:120090

    Article  CAS  Google Scholar 

  43. Cheong WM et al (2022) Structural, elastic and mechanical analysis of samarium doped zinc-borosilicate glass. Optik 267:169658

    Article  ADS  CAS  Google Scholar 

  44. Wagh A, Manjunath K, Hegde V, Kamath SD (2018) Gamma irradiation on bismuth borate glasses doped by Eu3+ ions: structural, optical and mechanical investigations. Optik 160:298–306

    Article  ADS  CAS  Google Scholar 

  45. Krol I, Avetisov R, Zykova M, Kazmina K, Barinova O (2022) Zinc borosilicate glasses doped with Co2+ ions: Synthesis and optical properties. Optical Materials 132:112768

    Article  CAS  Google Scholar 

  46. M.Z. Alam, Experiments in Nonlinear Optics with Epsilon-Near-Zero Materials. 2020, Université d'Ottawa/University of Ottawa.

  47. S. Thirumaran and N. Karthikeyan (2013). Structural elucidation of some borate glass specimen by employing ultrasonic and spectroscopic studies. Journal of Ceramics, 2013.

  48. Al-Nidawi A et al (2023) Enhancement of elastic properties and surface plasmon resonance with the addition of boron oxide to the ZnO−SiO2 glass system. Journal of Non-Crystalline Solids 605:122175

    Article  CAS  Google Scholar 

  49. Wang et al (2021) Softening—melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets. International Journal of Minerals, Metallurgy and Materials 28(4):621–628

    Article  ADS  CAS  Google Scholar 

  50. Aktas B et al (2022) Effect of Er2O3 on structural, mechanical and optical properties of Al2O3-Na2O-B2O3-SiO2 glass. Journal of Non-Crystalline Solids 584:121516

    Article  CAS  Google Scholar 

  51. Singh and T. Walia, (2021) Review on silicate and borosilicate-based glass sealants and their interaction with components of solid oxide fuel cell. International Journal of Energy Research 45(15):20559–20582

    Article  ADS  Google Scholar 

  52. Morozov IB (2011) Anelastic acoustic impedance and the correspondence principle. Geophysical Prospecting 59(1):24–34

    Article  ADS  Google Scholar 

  53. Dalmont JP (2001) Acoustic impedance measurement, Part I: A review. Journal of Sound and Vibration 243(3):427–439

    Article  ADS  Google Scholar 

  54. Hiremath N, Kumar V, Motahari N, Shukla D (2021) An overview of acoustic impedance measurement techniques and future prospects. Metrology 1(1):17–38

    Article  Google Scholar 

  55. Palani and M.M.A. Kumar (2015). THERMAL, FTIR AND EPR STUDIES OF Ni2+ AND W6+ TRANSITION METAL IONS DOPED WITH TELLURITE BARIUM BORATE GLASS AT ROOM TEMPERATURE. Journal of Applied Physical Science International: p. 145-155.

  56. M. Lluscà Jané (2015). Novel light management techniques for thin film solar cells: Nanotextured substrates and transparent conducting upconverters.

  57. Li, Lijun, J. Liu and T. Zhu. Study of plasmon resonance. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.

  58. Kazemi-Darsanaki R, Azizzadeh A, Nourbakhsh M, Raeisi G, AzizollahiAliabadi M (2013) Biosensors: functions and applications. J. Biol. Today’s World 2(1):53–61

    Google Scholar 

  59. Khushaini MAA et al (2022) Exploiting a strong coupling regime of organic pentamer surface plasmon resonance based on the Otto configuration for creatinine detection. Optics Express 30(9):14478–14491

    Article  ADS  CAS  Google Scholar 

  60. Wang X, Zhan S, Huang Z, Hong X (2013) Advances and applications of surface plasmon resonance biosensing instrumentation. Instrumentation science and technology 41(6):574–607

    Article  ADS  Google Scholar 

  61. Singh M, Truong J, Reeves WB, J. i. Hahm, (2017) Emerging cytokine biosensors with optical detection modalities and nanomaterial-enabled signal enhancement. Sensors 17(2):428

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Universiti Putra Malaysia through the Geran Putra Berimpak (GP-GPB/2021/9702600).

Funding

This project was supported by Universiti Putra Malaysia through the Geran Putra Berimpak (GP-GPB/2021/9702600). Dr. Mohd Hafiz Mohd Zaid has received research support from Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Ali Jabbar Abed Al-Nidawi: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Visualization. Khamirul Amin Matori: Conceptualization, Methodology, Formal analysis, Data Curation, Writing - Original Draft, Supervision, Project administration, Funding acquisition. Mohd Hafiz Mohd Zaid, Josephine Liew Ying Chyi, Tan Sin Tee: Formal analysis, Data Curation, Writing - Review & Editing, Supervision. Data Curation, Writing - Review & Editing. Muhammad Asif Ahmad Khushaini, Ahmad Rifqi Md Zain, Wurood Rahi Mutage: Methodology, Software, Formal analysis, Data Curation. Mohammad Ayman Abuallan, Abdelkader Mohammed Efa: Conceptualization, Methodology, Software, Formal analysis, Investigation.

Corresponding author

Correspondence to Khamirul Amin Matori.

Ethics declarations

Ethics approval

The manuscript has not been published.

Consent to Participate and Publication

The authors consent to participate and publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nidawi, A.J.A., Matori, K.A., Zaid, M.H.M. et al. Er2O3 doped zinc borosilicate glass substrate: Impact of doping to the structural, optical and surface plasmon resonance performance. Silicon (2024). https://doi.org/10.1007/s12633-024-02887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02887-z

Keywords

Navigation