Skip to main content
Log in

A Review on the Development of Silicon and Silica Based Nano Materials in the Food Industry

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon and silica-based nanoparticles have been widely used in the food sector for a substantial period of time. The past few years have significantly enhanced the use of these compounds in many aspects of food preparation, packaging, and storage. The desirable characteristics of silicon and silica-based nanomaterials, such as non-toxicity, biocompatibility, lack of taste or odor, and a large surface area, make them excellent for use in food-related applications. Nanomaterials made of silicon or silica have unique physical, chemical, and biological characteristics that make them appropriate for a range of uses in the food industry. Due to its diverse applications, silicon is crucial for maintaining the nutritional value, security, and shelf life of food. The current study covers a wide variety of topics, such as the use of silicon and silica-based nanoparticles as stabilizers, anticaking agents, gelling agents, microencapsulating agents, clarifying and separating aids, carriers for enzymes, extrusion, packaging, and food sensors. Consequentially, this review discusses recent research results as well as potential future opportunities for the creation and application of silicon- and silica-based nanoparticles in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article. Should further data or information be required, these are available from the corresponding author upon request.

References

  1. Jadhav R, Pawar P, Choudhari V et al (2023) An overview of antimicrobial nanoparticles for food preservation. Mater Today Proc 72:204–216

    Article  CAS  Google Scholar 

  2. Omerović N, Djisalov M, Živojević K et al (2021) Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 20:2428–2454

    Article  PubMed  Google Scholar 

  3. Chen J, Guo Y, Zhang X et al (2023) Emerging nanoparticles in food: sources, application, and safety. J Agric Food Chem 71:3564–3582

    Article  CAS  PubMed  Google Scholar 

  4. Singh R, Dutt S, Sharma P et al (2023) Future of nanotechnology in food industry: challenges in processing, packaging, and food safety. Global Chall 7:2200209

    Article  Google Scholar 

  5. Ponnusamy M, Natrayan L, Patil PP et al (2022) Research article multiresponse optimization of mechanical behaviour of Calotropis gigantea/Nano-Silicon-based hybrid nanocomposites under cryogenic environment. Cellulose 76:77–79

    Google Scholar 

  6. Bose I, Roy S, Pandey VK, Singh R (2023) A comprehensive review on significance and advancements of Antimicrobial agents in biodegradable food packaging. Antibiotics 12:968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barkachary BM, Joshi SN (2014) Finite element simulation of Single Point Diamond Turning (SPDT) of Silicon. In: International Conference of Precision, Meso, Micro and Nano Engineering (COPEN-8: 2013). pp 1023–1026

  8. Yapıcı E, Karakuzu-İkizler B, Yücel S (2021) Anticaking additives for food powders. In: Ermiş E (ed) Food powders properties and characterization. Food engineering series. Springer, Cham. https://doi.org/10.1007/978-3-030-48908-3_6

  9. Afzaal M et al (2022) Anticaking agents in food nanotechnology. In: Egbuna C, Jeevanandam JC, Patrick-Iwuanyanwu KN, Onyeike E (eds) Application of nanotechnology in food science, processing and packaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98820-3_9

  10. Fu Y, Luo F, Ma L, Dai H, Wang H, Chen H, Zhang Y (2023) The moisture adsorption, caking, and flowability of silkworm pupae peptide powders: The impacts of anticaking agents. Food Chem 419:135989. https://doi.org/10.1016/j.foodchem.2023.135989

  11. Nortuy N, Suthapakti K, Utama-ang N (2018) Effects of maltodextrin and silicon dioxide added as anticaking agents on the properties of instant date palm (Phoenix dactylifera L.) powder using spray drying. J Adv Agric Technol 5(2). https://doi.org/10.18178/JOAAT.5.2.86-92

  12. Karakuzu Ikizler B, Yapıcı E, Yucel S, Ermiş E (2023) Production and characterization of calcium silica aerogel powder as a food additive. ACS Omega 8(12):11479–11491. https://doi.org/10.1021/acsomega.3c00358

  13. Mahmudah NA, Widigdyo A, Kurniawan D et al (2023) Functional properties of salted duck egg powder with maltodextrin and tricalcium phosphate incorporation as anticaking agents. Turkish J Agric-Food Sci Technol 11:312–317

    Article  Google Scholar 

  14. Lin D, Zhang N, Guan Y, Aili Z, Huang F, Li W, Wenxiang W. Oral administration of silicon dioxide nanoparticles reduces hepatic superoxide dismutase and glutathione peroxidase activity via decreasing zinc and selenium absorption in intestine. https://doi.org/10.2139/ssrn.4233114

  15. Sadowska A, Świderski F (2020) Sources, bioavailability, and safety of silicon derived from foods and other sources added for nutritional purposes in food supplements and functional foods. Appl Sci 10:6255

    Article  CAS  Google Scholar 

  16. Heidari F, Jafari SM, Ziaiifar AM, Anton N (2022) Preparation of pickering emulsions stabilized by modified silica nanoparticles via the Taguchi approach. Pharmaceutics 14:1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gmoshinski IV, Shipelin VA, Khotimchenko SA (2018) Nanomaterials in food products and their package: Comparative analysis of risks and advantages. Health Risk Analysis 4:133–141. https://doi.org/10.21668/health.risk/2018.4.16.eng

  18. Min X, Fang M, Huang Z et al (2015) Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep 5:1–11

    Article  Google Scholar 

  19. Naidoo L, Suvardhan K, Sabela MI, Bisetty K (2020) Multivariate optimization of field-flow fractionation of nanoscale synthetic amorphous silica in processed foods supported by computational modelling. New J Chem 44:17542–17551

    Article  CAS  Google Scholar 

  20. Zhao X, Yu G, Li J et al (2018) Eco-friendly Pickering emulsion stabilized by silica nanoparticles dispersed with high-molecular-weight amphiphilic alginate derivatives. ACS Sustain Chem Eng 6:4105–4114

    Article  CAS  Google Scholar 

  21. Kashyrina Y, Muratov O, Sokolskyi G, Miroshnikov O (2017) Mathematical modeling of pickering emulsions stabilization process by solid nanoparticles. Ukrainian food Journal 6:524–533

    Article  CAS  Google Scholar 

  22. Ibrahim SA, Soliman OR (2014) Characterization of nanoparticles stabilized food emulsion and its adhesion to packaging sheets. Int J Adv Res (Indore) 2:1045–1058

    Google Scholar 

  23. Feng X, Dai H, Ma L et al (2020) Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids Surf B Biointerfaces 196:111294

    Article  CAS  PubMed  Google Scholar 

  24. Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  25. Sciortino M, Scurria A, Lino C et al (2021) Silica-microencapsulated orange oil for sustainable pest control. Adv Sustain Syst 5:2000280

    Article  CAS  Google Scholar 

  26. Zhu C, Lin Y, Fang G (2020) Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials. Appl Therm Eng 169:114943

    Article  CAS  Google Scholar 

  27. Drusch S, Serfert Y, Schwarz K (2006) Microencapsulation of fish oil with n-octenylsuccinate‐derivatised starch: Flow properties and oxidative stability. Eur J Lipid Sci Technol 108:501–512

    Article  CAS  Google Scholar 

  28. Velmurugan G, Shankar VS, Rahiman MK et al (2023) Effectiveness of silica addition on the mechanical properties of jute/polyester based natural composite. Mater Today Proc 72:2075–2081

    Article  CAS  Google Scholar 

  29. Velmurugan G, Siva Shankar V, Kalil Rahiman M, Elil Raja D, Nagaraj M, Nagalakshmi TJ Experimental investigation of high filler loading of SiO2 on the mechanical and dynamic mechanical analysis of natural PALF fibre-based hybrid composite. Silicon 15:5587–5602. https://doi.org/10.1007/s12633-023-02464-w

  30. Ferreira S, Malacrida CR, Telis VRN (2016) Influence of emulsification methods and use of colloidal silicon dioxide on the microencapsulation by spray drying of turmeric oleoresin in gelatin-starch matrices. Can J Chem Eng 94:2210–2218

    Article  CAS  Google Scholar 

  31. Ashraf MA, Khan AM, Ahmad M, Sarfraz M (2015) Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment. Front Chem 3:42

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol 2015:6. https://doi.org/10.1155/2015/852394

  33. de Moraes EG, Innocentini MDM, Biasetto L et al (2021) Gel casting of silicon nitride foams using biopolymers as gelling agents. Open Ceram 8:100183

    Article  Google Scholar 

  34. Villota R, Hawkes JG, Cochrane H (1986) Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. Crit Rev Food Sci Nutr 23:289–321

    Article  CAS  PubMed  Google Scholar 

  35. Cong L, Zou B, Palacios A et al (2022) Thickening and gelling agents for formulation of thermal energy storage materials–A critical review. Renew Sustain Energy Rev 155:111906

    Article  CAS  Google Scholar 

  36. Diab R, Canilho N, Pavel IA et al (2017) Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci 249:346–362

    Article  CAS  PubMed  Google Scholar 

  37. Siddiqui S, Alrumman SA (2021) Influence of nanoparticles on food: an analytical assessment. J King Saud University-Science 33:101530

    Article  Google Scholar 

  38. Go M-R, Bae S-H, Kim H-J et al (2017) Interactions between food additive silica nanoparticles and food matrices. Front Microbiol 8:1013

    Article  PubMed  PubMed Central  Google Scholar 

  39. Si W, Gao Y, Mei X et al (2021) Mesoporous silica nanoparticles loaded with capsaicin and their oxidation resistance in meat preservation. Food Chem 344:128737

    Article  CAS  PubMed  Google Scholar 

  40. Barahona F, Ojea-Jimenez I, Geiss O et al (2016) Multimethod approach for the detection and characterisation of food-grade synthetic amorphous silica nanoparticles. J Chromatogr A 1432:92–100

    Article  CAS  PubMed  Google Scholar 

  41. Maleki Dizaj S, Sharifi S, Tavakoli F et al (2022) Curcumin-loaded silica nanoparticles: applications in infectious disease and food industry. Nanomaterials 12:2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sepulveda J, Villegas C, Torres A et al (2020) Effect of functionalized silica nanoparticles on the mass transfer process in active PLA nanocomposite films obtained by supercritical impregnation for sustainable food packaging. J Supercrit Fluids 161:104844

    Article  CAS  Google Scholar 

  43. Kelly C, Yusufu D, Okkelman I et al (2020) Extruded phosphorescence based oxygen sensors for large-scale packaging applications. Sens Actuators B Chem 304:127357

    Article  CAS  Google Scholar 

  44. Suvarna V, Nair A, Mallya R et al (2022) Antimicrobial nanomaterials for food packaging. Antibiotics 11:729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarfraz J, Gulin-Sarfraz T, Nilsen-Nygaard J, Pettersen MK (2020) Nanocomposites for food packaging applications: an overview. Nanomaterials 2021 11:10

    Google Scholar 

  46. Moraru CI, Panchapakesan CP, Huang Q et al (2003) Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology 57:24–29

    Google Scholar 

  47. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  48. García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol 30:573–581

    Article  Google Scholar 

  49. Chadha U, Bhardwaj P, Selvaraj SK et al (2022) Current trends and future perspectives of nanomaterials in food packaging application. J Nanomater 2022:1–32

    Article  Google Scholar 

  50. Bumbudsanpharoke N, Ko S (2019) Nanoclays in food and beverage packaging. J Nanomater 2019:1–13. https://doi.org/10.1155/2019/8927167

  51. Yap RCC, Kwablah APS, He J, Li X (2016) Functions of nano-materials in food packaging. J Mol Eng Mater 4:1640015

    Article  CAS  Google Scholar 

  52. Hoek EMV, Ghosh AK, Huang X et al (2011) Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 283:89–99

    Article  CAS  Google Scholar 

  53. Murray BS, Phisarnchananan N (2014) The effect of nanoparticles on the phase separation of waxy corn starch + Locust bean gum or guar gum. Food Hydrocoll 42:92–99

    Article  CAS  Google Scholar 

  54. Alison L, Demirörs AF, Tervoort E et al (2018) Emulsions stabilized by chitosan-modified silica nanoparticles: PH control of structure–property relations. Langmuir 34:6147–6160

    Article  CAS  PubMed  Google Scholar 

  55. Liu S, Li Z, Yu B et al (2020) Recent advances on protein separation and purification methods. Adv Colloid Interface Sci 284:102254

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz-Rodriguez PE, Meshulam D, Lesmes U (2014) Characterization of Pickering O/W emulsions stabilized by silica nanoparticles and their responsiveness to in vitro digestion conditions. Food Biophys 9:406–415

    Article  Google Scholar 

  57. Shahrestani H, Taheri-Kafrani A, Soozanipour A, Tavakoli O (2016) Enzymatic clarification of fruit juices using xylanase immobilized on 1, 3, 5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem Eng J 109:51–58

    Article  CAS  Google Scholar 

  58. Aureli F, D’Amato M, Raggi A, Cubadda F (2015) Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection. J Anal at Spectrom 30:1266–1273

    Article  CAS  Google Scholar 

  59. Mohammadi M, Mokarram RR, Shahvalizadeh R et al (2020) Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. Food Biosci 36:100625

    Article  CAS  Google Scholar 

  60. Grombe R, Charoud-Got J, Emteborg H et al (2014) Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal Bioanal Chem 406:3895–3907

    CAS  PubMed  Google Scholar 

  61. Wu H, Mu W (2022) Application prospects and opportunities of inorganic nanomaterials for enzyme immobilization in the food processing industry. Curr Opin Food Sci 47:100909. https://doi.org/10.1016/j.cofs.2022.100909

  62. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    Article  CAS  Google Scholar 

  63. Popat A, Hartono SB, Stahr F et al (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Videira-Quintela D, Martin O, Montalvo G (2021) Emerging opportunities of silica-based materials within the food industry. Microchem J 167:106318

    Article  CAS  Google Scholar 

  65. Yushkova ED, Nazarova EA, Matyuhina AV et al (2019) Application of immobilized enzymes in food industry. J Agric Food Chem 67:11553–11567

    Article  CAS  PubMed  Google Scholar 

  66. Liu D-M, Dong C (2020) Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem 92:464–475

    Article  Google Scholar 

  67. Fathi M, Karim M, Khoigani SR, Mosayebi V (2019) Use of nanotechnology for immobilization and entrapment of food applicable enzymes. In: Mérillon JM, Ramawat KG (eds) Bioactive molecules in food. Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_52

  68. Alyassin Y, Sayed EG, Mehta P et al (2020) Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today 25:1513–1520

    Article  CAS  PubMed  Google Scholar 

  69. Florek J, Caillard R, Kleitz F (2017) Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale 9:15252–15277

    Article  CAS  PubMed  Google Scholar 

  70. Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM (2022) Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Critl Rev Food Sci Nutr 21:1–9. https://doi.org/10.1080/10408398.2022.2092719

  71. Wu C, Zhu Y, Wu T et al (2019) Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chem 288:139–145

    Article  CAS  PubMed  Google Scholar 

  72. Dong W, Su J, Chen Y et al (2022) Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chem 373:131414

    Article  CAS  PubMed  Google Scholar 

  73. Carmo IAD, de Souza AKN, Fayer L, Munk M, de Mello Brandão H, de Oliveira LFC, de Souza NLGD (2023) Cytotoxicity and bactericidal activity of alginate/polyethylene glycol films with zinc oxide or silicon oxide nanoparticles for food packaging. Int J Polym Mater Polym Biomater 72(8):577–588. https://doi.org/10.1080/00914037.2022.2032706

  74. Higashisaka K, Yoshioka Y, Tsutsumi Y (2015) Applications and safety of nanomaterials used in the food industry. Food Saf 3:39–47

    Article  Google Scholar 

  75. Reig CS, Lopez AD, Ramos MH, Ballester VAC (2014) Nanomaterials: a map for their selection in food packaging applications. Packaging Technol Sci 27:839–866

    Article  CAS  Google Scholar 

  76. Singh T, Shukla S, Kumar P et al (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bangar SP, Whiteside WS (2021) Nano-cellulose reinforced starch bio composite films-A review on green composites. Int J Biol Macromol 185:849–860

    Article  CAS  PubMed  Google Scholar 

  78. Ros-Lis JV, Bernardos A, Pérez É et al (2018) Functionalized silica nanomaterials as a new tool for new industrial applications. Impact of Nanoscience in the Food Industry. Elsevier, pp 165–196

  79. He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27:1–21

    Article  PubMed  Google Scholar 

  80. Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15:6357–6372

    Article  CAS  PubMed  Google Scholar 

  81. Pan M, Yin Z, Liu K et al (2019) Carbon-based nanomaterials in sensors for food safety. Nanomaterials 9:1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bajpai VK, Kamle M, Shukla S et al (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26:1201–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Velmurugan G, Chohan JS, Muhammed Abraar SA, Sathish R, Senthil Murugan S, Nagaraj M, Suresh Kumar S, Siva Shankar V, Elil Raja D (2023) Investigation of Nano SiO2 filler loading on mechanical and flammability properties of jute-based hybrid polypropylene composites. Silicon 1:1–7. https://doi.org/10.1007/s12633-023-02578-1

  84. Shankar V, Siva G, Velmurugan S, Kaliappan SB, Sethupathy SS, Patil PP, Anitha G, Kailo GG (2022) Optimization of CO2 concentration on mortality of various stages of Callosobruchus maculatus and development of controlled atmosphere storage structure for black gram grains. Adsorpt Sci Technol 2022. https://doi.org/10.1155/2022/3381510

  85. Wang H, Jiang X, Lee S, He Y (2014) Silicon nanohybrid-based surface‐enhanced raman scattering sensors. Small 10:4455–4468

    Article  CAS  PubMed  Google Scholar 

  86. Ali MA, Rehman I, Iqbal A et al (2014) Nanotechnology, a new frontier in Agriculture. Adv life sci 1:129–138

    Google Scholar 

  87. Mustafa F, Andreescu S (2020) Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 10:19309–19336

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dahlan NA, Thiha A, Ibrahim F et al (2022) Role of nanomaterials in the fabrication of bioNEMS/MEMS for Biomedical Applications and towards pioneering food waste utilisation. Nanomaterials 12:4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Prasad RD, Sahoo AK, Shrivastav OP et al (2022) A review on aspects of nanotechnology in food science and animal nutrition. ES Food Agrofor 8:12–46

    CAS  Google Scholar 

  90. Iranshahy M, Hanafi-Bojd MY, Aghili SH et al (2023) Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential–a review. RSC Adv 13:22250–22267

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peters RJB, Oomen AG, van Bemmel G et al (2020) Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology 14:420–432

    Article  CAS  PubMed  Google Scholar 

  92. Stachyra K, Kiepura A, Suski M et al (2023) Changes in the liver proteome in apoE knockout mice exposed to inhalation of silica nanoparticles indicate mitochondrial damage and impairment of ER stress responses associated with microvesicular steatosis. Environ Sci Pollut Res 30:699–709

    Article  CAS  Google Scholar 

  93. Omar AS (2022) Nanoformulation safety versus toxicity; What do the recent studies tell us? Int J Pharm Res Allied Sci 11(4). https://doi.org/10.51847/sPFPlDPSVl

  94. Fujihara J, Nishimoto N (2023) Review of zinc oxide nanoparticles: Toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biol Trace Elem Res 1–15. https://doi.org/10.1007/s12011-023-03644-w

  95. Sahoo M, Panigrahi C, Vishwakarma S, Kumar J (2022) A review on nanotechnology: applications in food industry, future opportunities, challenges and potential risks. J Nanatechnol Nanomaterials 3:28–33

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences for giving a great opportunity to writing this article.

Funding

No funding was received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Siva Shankar V and Velmurugan G: Conceptualization, Writing an original draft, Methodology; Elil Raja D and Manikandan T: Investigation, Review. Suresh Kumar S and Nagaraj M: Testing, Evaluation. Jasgurpreet Singh and A. John Presin Kumar: Editing.

Corresponding author

Correspondence to V. Siva Shankar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Yes. All permission granted.

Competing Interests

The authors declare no competing interests.

Conflict of Interest

Nil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, V.S., Velmurugan, G., Raja, D.E. et al. A Review on the Development of Silicon and Silica Based Nano Materials in the Food Industry. Silicon 16, 979–988 (2024). https://doi.org/10.1007/s12633-023-02748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02748-1

Keywords

Navigation