Skip to main content
Log in

Sm3+-Doped Alumino Borophospho-Silicate Glasses: An Examination of the Optical, Structural, and Gamma-ray Protective Features

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A prime series of Sm3+-doped alumino borophospho-silicate (xABPS) glasses were fabricated while varying the samarium ion concentration by employing the traditional melt-quenching method. XRD and FTIR characterizations were made for the structural investigation of the present glasses and the physical properties were calculated and reported. The high compactness and bonding nature of the xABPS glass system are explained through parameters such as boron–boron spacing, oxygen packing density, and the metallization criterion. The calculated mechanical properties illustrate the packing efficiency of the studied glasses. The absorption spectra exhibited several peaks in the UV–Vis-NIR region and following Tauc's plot method, the direct and indirect band gap for the glasses are determined and discussed. Various photon interaction parameters were calculated using the Phy-X program in a selected energy range. The obtained results of the studied glasses' mass attenuation coefficient (MAC), mean free path (MFP), and half-value layer (HVL) are compared with the reported data, whereby the increasing value of MAC, and the decreasing values of MFP and HVL confirm that the discussed glasses are suitable for radiation-shielding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Singh GP, Singh J, Kaur P et al (2020) Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J Mater Res Technol 9:14425–14442. https://doi.org/10.1016/j.jmrt.2020.10.020

    Article  CAS  Google Scholar 

  2. Mohsin MH, Qureshi K, Ashfaq T (2019) Safety assessment of MSR concept using INPRO methodology. Prog Nucl Energy 117:103099. https://doi.org/10.1016/j.pnucene.2019.103099

    Article  CAS  Google Scholar 

  3. Khandaker MU, Bradley DA, Osman H et al (2022) The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications. Radiat Phys Chem 200:110342. https://doi.org/10.1016/j.radphyschem.2022.110342

    Article  CAS  Google Scholar 

  4. Yasmin S, Khandaker MU, Bradley DA et al (2022) The efficacy of various thicknesses of float glasses for protection of gamma-radiation. Radiat Phys Chem 199:110301. https://doi.org/10.1016/j.radphyschem.2022.110301

    Article  CAS  Google Scholar 

  5. Libeesh NK, Naseer KA, Mahmoud KA et al (2022) Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications. Radiat Phys Chem 193:110004. https://doi.org/10.1016/j.radphyschem.2022.110004

    Article  CAS  Google Scholar 

  6. Arivazhagan S, Naseer KA, Mahmoud KA et al (2022) Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India. Radiat Phys Chem 196:110108. https://doi.org/10.1016/j.radphyschem.2022.110108

    Article  CAS  Google Scholar 

  7. Kavaz E, Tekin HO, Kilic G, Susoy G (2020) Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. J Non Cryst Solids 544:120169. https://doi.org/10.1016/j.jnoncrysol.2020.120169

    Article  CAS  Google Scholar 

  8. Saritha D, Markandeya Y, Salagram M et al (2008) Effect of Bi2O3 on physical, optical and structural studies of ZnO-Bi2O3-B2O3 glasses. J Non Cryst Solids 354:5573–5579. https://doi.org/10.1016/j.jnoncrysol.2008.09.017

    Article  CAS  Google Scholar 

  9. Ganguli M, Rao KJ (1999) Structural Role of PbO in Li2O-PbO-B2O3 Glasses. J Solid State Chem 145:65–76. https://doi.org/10.1006/jssc.1999.8221

    Article  CAS  Google Scholar 

  10. Ichoja A, Hashim S, Ghoshal SK et al (2018) Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J Rare Earths 36:1264–1271. https://doi.org/10.1016/j.jre.2018.05.013

    Article  CAS  Google Scholar 

  11. Albarzan B, Almuqrin AH, Koubisy MS et al (2021) Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses. Prog Nucl Energy 141:103931. https://doi.org/10.1016/j.pnucene.2021.103931

    Article  CAS  Google Scholar 

  12. Makarious AS, Bashter II, Abdo AES et al (1996) On the utilization of heavy concrete for radiation shielding. Ann Nucl Energy 23:195–206. https://doi.org/10.1016/0306-4549(95)00021-1

    Article  CAS  Google Scholar 

  13. Özen S, Şengül C, Erenoğlu T et al (2016) Properties of Heavyweight Concrete for Structural and Radiation Shielding Purposes. Arab J Sci Eng 41:1573–1584. https://doi.org/10.1007/s13369-015-1868-6

    Article  CAS  Google Scholar 

  14. Sakr K, El-Hakim E (2005) Effect of high temperature or fire on heavy weight concrete properties. Cem Concr Res 35:590–596. https://doi.org/10.1016/j.cemconres.2004.05.023

    Article  CAS  Google Scholar 

  15. Singh K, Singh H, Sharma G et al (2005) Gamma-ray shielding properties of CaO-SrO-B2O3 glasses. Radiat Phys Chem 72:225–228. https://doi.org/10.1016/j.radphyschem.2003.11.010

    Article  CAS  Google Scholar 

  16. Libeesh NK, Naseer KA, Arivazhagan S et al (2022) Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. Eur Phys J Plus 137:267. https://doi.org/10.1140/epjp/s13360-022-02473-5

    Article  CAS  Google Scholar 

  17. Lakshminarayana G, Baki SO, Kaky KM et al (2017) Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J Non Cryst Solids 471:222–237. https://doi.org/10.1016/j.jnoncrysol.2017.06.001

    Article  CAS  Google Scholar 

  18. Dong MG, Sayyed MI, Lakshminarayana G et al (2017) Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J Non Cryst Solids 468:12–16. https://doi.org/10.1016/j.jnoncrysol.2017.04.018

    Article  CAS  Google Scholar 

  19. Wagh A, Sayyed MI, Askin A et al (2019) Influence of RE oxides (Eu3+, Sm3+, Nd3+) on gamma radiation shielding properties of lead fluoroborate glasses. Solid State Sci 96:105959. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2019.105959

    Article  CAS  Google Scholar 

  20. Naseer KA, Marimuthu K, Al-Buriahi MS et al (2021) Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties. Ceram Int 47:329–340. https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  CAS  Google Scholar 

  21. Libeesh NK, Naseer KA, Arivazhagan S et al (2022) Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: An experimental and Monte Carlo study with lithological mapping. Ore Geol Rev 142:104735. https://doi.org/10.1016/j.oregeorev.2022.104735

    Article  Google Scholar 

  22. Sayyed MI, Dwaikat N, Mhareb MHA et al (2022) Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. J Mater Res Technol 18:1017–1027. https://doi.org/10.1016/j.jmrt.2022.02.130

    Article  CAS  Google Scholar 

  23. Arunkumar S, Naseer KA, YoosufAmeen M et al (2023) Physical, structural, optical, and radiation screening studies on Dysprosium ions doped Niobium Bariumtelluroborate glasses. Radiat Phys Chem 204:110669. https://doi.org/10.1016/j.radphyschem.2022.110669

    Article  CAS  Google Scholar 

  24. Bassam SA, Naseer KA, Keerthana VK et al (2023) Physical, structural, elastic and optical investigations on Dy3+ ions doped boro-tellurite glasses for radiation attenuation application. Radiat Phys Chem 110798. https://doi.org/10.1016/j.radphyschem.2023.110798

  25. Teresa PE, Naseer KA, Piotrowski T et al (2021) Optical properties and radiation shielding studies of europium doped modifier reliant multi former glasses. Optik (Stuttg) 247:168005. https://doi.org/10.1016/j.ijleo.2021.168005

    Article  CAS  Google Scholar 

  26. Naseer KA, Marimuthu K (2021) The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications. Vacuum 183:109788. https://doi.org/10.1016/j.vacuum.2020.109788

    Article  CAS  Google Scholar 

  27. Naseer KA, Marimuthu K, Mahmoud KA, Sayyed MI (2021) Impact of Bi2O3 modifier concentration on barium–zincborate glasses: physical, structural, elastic, and radiation-shielding properties. Eur Phys J Plus 136:116. https://doi.org/10.1140/epjp/s13360-020-01056-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrahim S, El-Agawany FI, Rammah YS et al (2021) ZnO-Bi2O3-B2O3 glasses doped with rare earth oxides: Synthesis, physical, structural characteristics, neutron and photon attenuation attitude. Optik (Stuttg) 243:167414. https://doi.org/10.1016/j.ijleo.2021.167414

    Article  CAS  Google Scholar 

  29. Prabhu NS, Hegde V, Sayyed MI et al (2019) Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Mater Chem Phys 230:267–276. https://doi.org/10.1016/j.matchemphys.2019.03.074

    Article  CAS  Google Scholar 

  30. Naseer KA, Arunkumar S, Marimuthu K (2019) The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. J Non Cryst Solids 520:119463. https://doi.org/10.1016/j.jnoncrysol.2019.119463

    Article  CAS  Google Scholar 

  31. Mhareb MHA (2020) Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl Phys A Mater Sci Process 126. https://doi.org/10.1007/s00339-019-3262-9

  32. Chimalawong P, Kirdsiri K, Kaewkhao J, Limsuwan P (2012) Investigation on the Physical and Optical Properties of Dy3+ Doped Soda-Lime-Silicate Glasses. Procedia Eng 32:690–698. https://doi.org/10.1016/j.proeng.2012.01.1328

    Article  CAS  Google Scholar 

  33. Halimah MK, Faznny MF, Azlan MN, Sidek HAA (2017) Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys 7:581–589. https://doi.org/10.1016/j.rinp.2017.01.014

    Article  Google Scholar 

  34. Dimitrov V, Sakka S (1996) Linear and nonlinear optical properties of simple oxides. II J Appl Phys 79:1741–1745. https://doi.org/10.1063/1.360963

    Article  CAS  Google Scholar 

  35. Singh DP, Pal Singh G (2013) Conversion of covalent to ionic behavior of Fe2O3-CeO2-PbO-B2O3 glasses for ionic and photonic application. J Alloys Compd 546:224–228. https://doi.org/10.1016/j.jallcom.2012.08.105

    Article  CAS  Google Scholar 

  36. Çelikbilek Ersundu M, Ersundu AE, Sayyed MI et al (2017) Evaluation of physical, structural properties and shielding parameters for K2O–WO3–TeO2 glasses for gamma ray shielding applications. J Alloys Compd 714:278–286. https://doi.org/10.1016/j.jallcom.2017.04.223

    Article  CAS  Google Scholar 

  37. Kaur S, Arora D, Kumar S et al (2018) Blue-yellow emission adjustability with aluminium incorporation for cool to warm white light generation in dysprosium doped borate glasses. J Lumin 202:168–175. https://doi.org/10.1016/j.jlumin.2018.05.034

    Article  CAS  Google Scholar 

  38. Agarwal A, Sheoran A, Sanghi S et al (2010) Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses. Spectrochim Acta Part A Mol Biomol Spectrosc 75:964–969. https://doi.org/10.1016/j.saa.2009.12.003

    Article  CAS  Google Scholar 

  39. Krishna Mohan N, Sahaya Baskaran G, Veeraiah N (2006) Dielectric and spectroscopic properties of PbO-Nb2O5 -P2O5:V2O5 glass system. Phys Status Solidi 203:2083–2102. https://doi.org/10.1002/pssa.200622093

    Article  CAS  Google Scholar 

  40. Sathiyapriya G, Divina R, Marimuthu K et al (2021) Exploration on dysprosium ions doped zinc barium boro-tellurite glasses towards radiation screening and photonic applications. Phys B Condens Matter 612:412991. https://doi.org/10.1016/j.physb.2021.412991

    Article  CAS  Google Scholar 

  41. Reddy R, Nazeer Ahammed Y, Rama Gopal K, Raghuram D (1998) Optical electronegativity and refractive index of materials. Opt Mater (Amst) 10:95–100. https://doi.org/10.1016/S0925-3467(97)00171-7

    Article  CAS  Google Scholar 

  42. Chen Q, Naseer KA, Marimuthu K et al (2021) Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems. J Aust Ceram Soc 57:275–286. https://doi.org/10.1007/s41779-020-00531-8

    Article  CAS  Google Scholar 

  43. Bhatia B, Meena SL, Parihar V, Poonia M (2015) Optical Basicity and Polarizability of Nd3+-Doped Bismuth Borate Glasses. New J Glas Ceram 05:44–52. https://doi.org/10.4236/njgc.2015.53006

    Article  Google Scholar 

  44. Makishima A, Mackenzie JD (1973) Direct calculation of Young’s moidulus of glass. J Non Cryst Solids 12:35–45. https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  45. Sayyed MI, Issa SAM, Tekin HO, Saddeek YB (2018) Comparative study of gamma-ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater Chem Phys 217. https://doi.org/10.1016/j.matchemphys.2018.06.034

  46. Sathiyapriya G, Naseer KA, Marimuthu K et al (2021) Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J Mater Sci Mater Electron 32:8570–8592. https://doi.org/10.1007/s10854-021-05499-0

    Article  CAS  Google Scholar 

  47. Kumar M, Rao AS (2020) Concentration-dependent reddish-orange photoluminescence studies of Sm3+ ions in borosilicate glasses. Opt Mater (Amst) 109:110356. https://doi.org/10.1016/j.optmat.2020.110356

    Article  CAS  Google Scholar 

  48. Naseer KA, Sathiyapriya G, Marimuthu K et al (2022) Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik (Stuttg) 251:168436. https://doi.org/10.1016/j.ijleo.2021.168436

    Article  CAS  Google Scholar 

  49. Poojha MKK, Naseer KA, Al-Ghamdi H et al (2022) A complete analysis of the structural, optical, and gamma-ray attenuation of Dy3+ doped modifiers dependent Lead phosphate boro-tellurite glasses. Optik (Stuttg) 264:169433. https://doi.org/10.1016/j.ijleo.2022.169433

    Article  CAS  Google Scholar 

  50. Şakar E, Özpolat ÖF, Alım B et al (2020) Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem 166:108496. https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  51. Al-Hadeethi Y, Sayyed MI (2020) BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection. Prog Nucl Energy 129:103511. https://doi.org/10.1016/j.pnucene.2020.103511

    Article  CAS  Google Scholar 

  52. Al-Hadeethi Y, Sayyed MI (2020) Evaluation of gamma ray shielding characteristics of CaF2–BaO –P2O5 glass system using Phy-X / PSD computer program. Prog Nucl Energy 126:103397. https://doi.org/10.1016/j.pnucene.2020.103397

    Article  CAS  Google Scholar 

  53. Abouhaswa AS, El-Agawany FI, Ahmed EM, Rammah YS (2022) Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat Phys Chem 192:109922. https://doi.org/10.1016/j.radphyschem.2021.109922

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R111), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation is done by Mr. M.N. Vishnu Narayanan Namboothiri, and data collection and analysis were performed by Mr. M.N. Vishnu Narayanan Namboothiri, Dr. K.A. Naseer and Dr. M.I. Sayyed. The first draft of the manuscript was written by Mr. M.N. Vishnu Narayanan Namboothiri, Dr. M.I. Sayyed and Dr. K.A. Naseer. The review and editing is done by Dr. K. Marimuthu and Dr. Nouf Almousa. The supervision is done by Dr. K. Marimuthu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Marimuthu.

Ethics declarations

Ethics Approval

Authors declare under their ethical and legal responsibility that the submitted paper is original and is not being submitted for the peer review process in any other journal. This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors read and approved the final manuscript for the publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnu Narayanan Namboothiri, M.N., Naseer, K.A., Marimuthu, K. et al. Sm3+-Doped Alumino Borophospho-Silicate Glasses: An Examination of the Optical, Structural, and Gamma-ray Protective Features. Silicon 15, 7797–7810 (2023). https://doi.org/10.1007/s12633-023-02620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02620-2

Keywords

Navigation