Skip to main content
Log in

Ag Doped ZnO Thin Films Deposited by Spin Coating for Silicon Surface Passivation

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Synthesized pure and Ag-doped ZnO nanostructures through a simple co-precipitation method, which was then applied onto silicon (Si) substrates using a spin-coating technique. The nanostructure and opto-electronic characteristics evolution of elaborated layers doped with different Ag content was studied. The crystal structure and surface morphology of the deposited films were investigated using XRD and atomic force microscopy (AFM) techniques. The surface passivation quality is determined by employing FTIR and photoconductance-based techniques, according to research on the evolution of electronic and optical losses in the silicon top surface. Lifetime values determined by photoconductance lifetime measurement show an increases from 1.5 to 106 μs at the density (n) of 5.1014 cm−3. However, the reflectivity given by UV–Vis results demonstrate a decrease from 36 to 6% after the deposition of Ag:ZnO on silicon surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Black LE, van de Loo BWH, Macco B, Melskens J, Berghuis WJH, Kessels WMM (2018) Explorative studies of novel silicon surface passivation materials: Considerations and lessons learned. Sol Energy Mater Sol Cells 188:182–189

    Article  CAS  Google Scholar 

  2. Melskens J, van de Loo BWH, Macco B, Vos MFJ, Palmans J, Smit S, Kessels WMM, Concepts and prospects of passivating contacts for crystalline silicon solar cells, in: Proceedings of the 42nd IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 2015, pp. 1–6

  3. Thomson AF, McIntosh KR (2012) Light-enhanced surface passivation of TiO2-coated silicon. Prog Photovolt Res Appl 20:343–349

    Article  CAS  Google Scholar 

  4. Hoex B, Heil SBS, Langereis E, van de Sanden MCM, Kessels WMM (2006) Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl Phys Lett 89:042112

    Article  Google Scholar 

  5. Salem M, Alami ZY, Bessais B et al (2015) Structural and optical properties of ZnO nanoparticles deposited on porous silicon for mc-Si passivation. J Nanopart Res 17:137

    Article  Google Scholar 

  6. van de Loo BWH (2017) Atomic-Layer-Deposited Surface Passivation Schemes for Silicon Solar Cells (Ph.D. thesis), Eindhoven University of Technology

  7. Salem M, Salem J, Ghannam H et al (2023) Optical and passivation properties of ZnO:fe on silicon substrates. J Mater Sci Mater Electron 34:332. https://doi.org/10.1007/s10854-022-09734-0

    Article  CAS  Google Scholar 

  8. Salem M, Massoudi I, Akir S, Litaiem Y, Gaidi M, Khirouni K (2017) J Alloy Compd 722:313–320. https://doi.org/10.1016/j.jallcom.2017.06.113

    Article  CAS  Google Scholar 

  9. Salem M, Akir S, Massoudi I, Litaiem Y, Gaidi M, Khirouni K (2017) Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping. Appl Phys A 123:243. https://doi.org/10.1007/s00339-017-0880-y

    Article  CAS  Google Scholar 

  10. Gaidi M, Salem M, Akir S, Massoudi I, Ghrib T, Litaiem Y, Khirouni K (2018) J Solid State Electrochem 22:3631–3637. https://doi.org/10.1007/s10008-018-4062-4

    Article  CAS  Google Scholar 

  11. Salem M, Akir S, Massoudi I, Litaiem Y, Gaidi M, Khirouni K (2018) J Alloy Compd 767:982–987. https://doi.org/10.1016/j.jallcom.2018.07.202

    Article  CAS  Google Scholar 

  12. Salem M, Akir S, Ghrib T, Daoudi K, Gaidi M (2016) J Alloy Compd 685:107–113. https://doi.org/10.1016/j.jallcom.2016.05.254

    Article  CAS  Google Scholar 

  13. Salem M, Ghannam H, Salem J, Ben Moussa S, Massoudi I, Gaidi M (2023) Silicon. https://doi.org/10.1007/s12633-023-02459-7, https://link.springer.com/article/10.1007/s12633-023-02459-7

  14. Salem M, Boussaid A, Ben Hamida MB (2023) Silicon. https://doi.org/10.1007/s12633-022-02285-3, https://link.springer.com/article/10.1007/s12633-022-02285-3

  15. Ghannam H, Bazin C, Chahboun A, Turmine M (2018) Control of the growth of electrodeposited zinc oxide on FTO glass. CrystEngComm. 20:6618–662+8

    Article  CAS  Google Scholar 

  16. Vamathevan V, Amal R, Beydoun D, Low G, McEvoy S (2002) Photocatalytic oxidation of organics in water using pure and silvermodified titanium oxide particles. J Photochem Photobiol A 148(233):31

    Google Scholar 

  17. Karunakaran C, Rajeswari V, Gomathisankar P (2010) Antibacterial and photocatalytic acitivities of sonochemically prepared ZnO and Ag-ZnO. J Alloy Compd 508:587–591

    Article  CAS  Google Scholar 

  18. Krayaoui M, Mhamdi A, KaouachLabidi H, Boukhachem A, Boubaker K, Amlouk M, Choturou R (2015) Some physical investigation on silver–ZnO doped sprayed thin films. Mat Sci Semicon Proc 30:255–262

    Article  Google Scholar 

  19. Jin Y, Cui Q, Wang K, Hao J, Wang Q, Zhang J (2011) Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystal. J Appl Phys 109(5):053521

    Article  Google Scholar 

  20. Dridi D, Litaiem Y, Karyaoui M, Chtourou R (2019) Eur Phys J Appl Phys 85:20401

    Article  CAS  Google Scholar 

  21. Chen G-J, Jian S-R, Juang J-Y (2018) Surface analysis and optical properties of Cu-Doped ZnO thin films deposited by radio frequency magnetron sputtering. Coatings 8:1–8

    Article  Google Scholar 

  22. Zhou F, Jing W, Liu P, Han D, Jiang Z, Wei Z (2017) Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors. Sensors (Basel) 17(10):2214

    Article  PubMed  Google Scholar 

  23. Boudjouan F, Chelouche A, Touam T, Djouadi D, Ouerdane Y (2016) Mater Sci Semicond Process 41:382–389

    Article  CAS  Google Scholar 

  24. Vitanov P, Kamenova M, Tyutyundzhiev N, Delibasheva M, Goranova E, Peneva M (1997) Thin Solid Films 297:299

    Article  CAS  Google Scholar 

  25. Swain BP (2020) Appl Phys A 126; 642. https://link.springer.com/article/10.1007/s00339-020-03824-8

Download references

Acknowledgements

The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program.

Author information

Authors and Affiliations

Authors

Contributions

M.S., H.G., A. A. and J.S. wrote the main manuscript text and Y. L., I.M., M. G. and  M.G. prepared figures 1-3. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Moez Salem or Abdullah Almohammedi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, M., Ghannam, H., Almohammedi, A. et al. Ag Doped ZnO Thin Films Deposited by Spin Coating for Silicon Surface Passivation. Silicon 15, 7321–7326 (2023). https://doi.org/10.1007/s12633-023-02586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02586-1

Keywords

Navigation