Skip to main content
Log in

Surface Modification of Magnetite Using Silica Coating: Spectroscopic, Structural, Morphological Characterization and Interaction with Crystal Violet Dye

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The essential goal of this work is to produce an eco-friendly and economically nano-adsorbent that may separate organic dye, especially, cationic dye, from polluted water prior to making use of this adsorbent in industrial field. This work suggests a way of fabricating magnetite and silica. The proposed approach concerned three steps: the preparation of magnetite (Fe3O4) nanoparticles by co-precipitation method, then of silica using sodium silicate prepared from silica sand, and finally a magnetite coating of silica Fe3O4/SiO2. The nanocomposites were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The XRD characterization displayed that silica formed an amorphous phase and that magnetite shaped a spinel phase. To optimize the diverse experimental variables affecting the elimination performance of the CV, the effects of experimental parameters including solution pH, adsorbent dose, contact time, initial dye concentration and temperature were evaluated. Adsorption kinetic disclosed that pseudo-second-order is the best model (R2 > 0.99, qe = 5.68 mg g−1). Adsorption isotherm represented that Langmuir is the best model with Qmax = 200 mg g−1. The negative ΔH° and ΔG° values exhibited the exothermic and spontaneous nature of CV sorption on the nanoparticles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information are available by request.

References

  1. Zangeneh H, Zinatizadeh AAL, Habib M, Akia M, Hasnain Isa M (2015) Photo-catalytic oxidation of organic dyes and pollutants in waste water using different modified titanium dioxides: a comparatives review. J Ing Eng Chem 26:1–36. https://doi.org/10.1016/j.jiec.2014.10.043

    Article  CAS  Google Scholar 

  2. Roca AG, Morales MP, O'Grady K (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnol 17:2783–2788. https://doi.org/10.1088/0957-4484/17/11/010

    Article  CAS  Google Scholar 

  3. Maity D, Choo SG, Yi J, Ding J, MinXue J (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J MagnMagn Mater 321:1256–1259. https://doi.org/10.1016/j.jmmm.2008.11.013

    Article  CAS  Google Scholar 

  4. Salem ANM, Ahmed MA, El-Shahat MF (2016) Selective adsorption of amaranth dye onFe3O4/MgO nanoparticles. J Mol Liq 219:780–788. https://doi.org/10.1016/j.molliq.2016.03.084

    Article  CAS  Google Scholar 

  5. Han X, Chu L, Liu S, Chen T, Ding C, Yan J, Cui L, Quan G (2015) Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. Bio Resour 10:2836–2849. https://doi.org/10.15376/biores.10.2.2836-2849

    Article  CAS  Google Scholar 

  6. Joshiba GJ, Kumar PS, Christopher FC, Pooja G, Kumar VV (2020) Fabrication of novel amine-functionalized magnetic silica nanoparticles for toxic metals: kinetic and isotherm modelling. Environ Sci Pollut Res Int 27:27202–27210. https://doi.org/10.1007/s11356-019-05186-y

    Article  CAS  PubMed  Google Scholar 

  7. Ismail AM, Menazea AA, Ali H (2021) Selective adsorption of cationic azo dyes onto zeolite nanorod-based membranes prepared via laser ablation. J Mater Sci Electron 32:19352–19367. https://doi.org/10.1007/s10854-021-06453-w

    Article  CAS  Google Scholar 

  8. Chaari I, Medhioub M, Jamoussi F, Hamzaoui AH (2020) Acid-treated clay materials (southwestern Tunisia) for removing sodium leuco-vat dye: characterization, adsorption study and activation mechanism. J Mol Struct 1223:128944. https://doi.org/10.1016/j.molstruc.2020.128944

    Article  CAS  Google Scholar 

  9. Ghorbani F, Kamari S (2019) Core–shell magnetic nanocomposite of Fe3O4@SiO2@NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environ Technol Innov 14:100333

    Article  Google Scholar 

  10. Zhang Z, Kong J (2011) Novel magneticfe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329. https://doi.org/10.1016/j.jhazmat.2011.07.033

    Article  CAS  PubMed  Google Scholar 

  11. Hariani PL, Faizal M, Marsi R, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal Procion dye. Int J Environ Sci Dev 4. https://doi.org/10.7763/IJESD.2013.V4.366

  12. Takai ZI, Mustafa MK, Asman S, Khairunnadim AS (2019) Preparation and characterization of magnetite (Fe3O4) nanoparticles by sol-gel method. In J Nanoelectron Mater 12:37–46

    Google Scholar 

  13. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of Iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C Nanomater Interface 113:13593–13599. https://doi.org/10.1021/jp902953t

    Article  CAS  Google Scholar 

  14. Morales F, Márquez G, Sagredo V, Torres TE, Denardin JC (2019) Structural and magnetic properties of silica-coated magnetite nanoaggregates. Phys B Condens Matter 572:214–219. https://doi.org/10.1016/j.physb.2019.08.007

    Article  CAS  Google Scholar 

  15. Huang J, Liu W, Liang Y, Li L, Duan L, Chen J, Zhu F, Lai Y, Zhu W, You W, Jia Z, Xiong J, Wang D (2018) Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold. Mater Sci Eng C 87:70–77. https://doi.org/10.1016/j.msec.2018.02.003

    Article  CAS  Google Scholar 

  16. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew ChemInt EdEng 46:1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  17. Zhang L, Shao HP, Zheng H, Lin T, Guo ZM (2016) Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. Int J Miner Metall Matter 23:1112–1118. https://doi.org/10.1007/s12613-016-1329-6

    Article  CAS  Google Scholar 

  18. Lee HJ, Lu Q, Lee JY, Jin Choi H (2019) Polymer-MagneticCompositeParticles of Fe3O4/poly (o-anisidine) and their suspension characteristics under applied magnetic fields. Polym 11:219. https://doi.org/10.3390/polym11020219

    Article  CAS  Google Scholar 

  19. Kakvandi B, Jonidi A, Kalantary RR (2013) Synthesis and Propertiesof Fe3O4-activated carbon magnetic nanoparticles for Remova lof aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Irn J Environ Health Sci Eng 10:19

    Article  Google Scholar 

  20. Shah KH, Ali S, Shah F (2018) Magnetic oxide nanoparticles (Fe3O4) impregnated bentonite clay as a potential adsorbent for Cr (III) adsorption. Mater Res Express 5:096102. https://doi.org/10.1088/2053-1591/aad50e

    Article  CAS  Google Scholar 

  21. Ahmad ARD, Imam SS, Oh WD (2020) Fe3O4-zeolite hybrid material as hetero-Fenton catalyst for enhanced degradation of aqueous Ofloxacin solution. Catalysts 10:1241. https://doi.org/10.3390/catal10111241

    Article  CAS  Google Scholar 

  22. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoximme-functionalized Fe3O4@SiO2 core–shell magnetic for highly efficient sorptionof U(VI). Chem Eng J 235:275–283. https://doi.org/10.1016/j.cej.2013.09.034

    Article  CAS  Google Scholar 

  23. Furlan PY, Furlan AY, Kisslinger K (2019) Water as the solvent in the Stober process for forming ultrafine silica shells on magnetite nanoparticles. ACS Sustain Chem Eng 7:15578–15584. https://doi.org/10.1021/acssuschemeng.9b03554

    Article  CAS  Google Scholar 

  24. Taufiq A, Nikmah A, Hidayat A, Sunaryono S, Mufti N, Susanto N (2020) Synthesis of magnetite/silica from sand to create a delivery vehicle. Heliyon 6:e03784. https://doi.org/10.1016/j.heliyon.2020.e03784

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Hu B (2008) Silica-coated magnetic nanoparticles modified with γ- mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd,Cu,Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma massspectrometry. Spectrochim Acta B At Spectrosc 63:437–444. https://doi.org/10.1016/j.sab.2007.12.010

    Article  CAS  Google Scholar 

  26. Kakavandi B, Jahangiri-rad M, Rafiee M, Esfahani AR, Babaei AA (2016) Develpement of response surface methodology for optimization of pheneol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous Mesoporous Mater 231:192–206. https://doi.org/10.1016/j.micromeso.2016.05.033

    Article  CAS  Google Scholar 

  27. Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed 46:4909–4912. https://doi.org/10.1002/anie.200700613

    Article  CAS  Google Scholar 

  28. Ding BJ, Chen WM, Fan LW, Zheng YH, Lv D, Lu ZX (2014) Preparation and characterization of Fe3O4@SiO2 magnetic catalyst support. Inorg Chem Ind 46:62

    CAS  Google Scholar 

  29. Kazemzadeh H, Ataie A, Rashchi F (2012) In situ synthesis of silica-coated magnetite nanoparticles by reverse Coprecipitation method. J Supercond Nov Magn 25:2803–2808. https://doi.org/10.1007/s10948-011-1270-x

    Article  CAS  Google Scholar 

  30. Yoshino H, Kamiya K, Nasu HIR (1990) Study on the structural evolution of sol-gel derived SiO2gels in the early stage of conversion to glasses. J Non-Cryst Solids 126:68–78. https://doi.org/10.1016/0022-3093(90)91024-L

    Article  CAS  Google Scholar 

  31. Hameed B, El-kaiary M (2008) Remval of basic dye from aqueous medium using a novel agricultural waste material. Pumpkin seed hullJ Hasard Mater 155:601–609. https://doi.org/10.1016/j.jhazmat.2007.11.102

    Article  CAS  Google Scholar 

  32. Subhan F, Aslam S, Yan Z, Khan M, Etim UI, Naeem M (2019) Effective adsorptive performance of Fe3O4@SiO2 core shell spheres for methylene blue: kinetics,isotherm and mechanism. J Porous Mater 26:1465–1474. https://doi.org/10.1007/s10934-019-00744-8

    Article  CAS  Google Scholar 

  33. Deng H, Lu J, Li G, Zang G, Wang X (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334. https://doi.org/10.1016/j.cej.2011.06.013

    Article  CAS  Google Scholar 

  34. Abu Auwal M, Hossen J, Rakib-uz-Zaman M (2018) Removal of phenol from aqueous solution using tamarind seed powder as adsorbent. J Env Sci Toxi Fod Tech 12:41–48. https://doi.org/10.9790/2402-1203014148

    Article  CAS  Google Scholar 

  35. Arnata W, Suprihatin FF, Richana N, Candra Sunarti T (2019) Adsorption of anionic Congo red dye by using cellulose from sago frond. Pollut Res 38:557–567

    CAS  Google Scholar 

  36. Lagergren S (1898) About the theory of so-calledadsorption of substances Kungliga Svenska Vetenskaps akademiens. Handlingar Band 24:1–39

    Google Scholar 

  37. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. https://doi.org/10.1016/S0923-0467(98)00076-1

    Article  CAS  Google Scholar 

  38. Langmuir I (1918) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 40:1361. https://doi.org/10.1016/S0016-0032(17)90938-X

    Article  CAS  Google Scholar 

  39. Freundlich HMF (1906) Uber die adsorption ilosungen. Z Phys Chem 57:385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  40. Noori M, Tahmasebpoor M, Nami SH (2022) Adsorption removal of crystal violet in single and binary systems onto low-costiron oxide nanoparticles coated clinoptilolite powders/granules. https://doi.org/10.21203/rs.3.rs-1727993/v1

  41. Elwakeel KZ, El-Bindary AA, El-Sonbati AZ, Hawas AR (2017) Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Can J Chem 95:807–815. https://doi.org/10.1139/cjc-2016-0641

    Article  CAS  Google Scholar 

  42. Foroutan R, Peighambardoust SJ, Peighambardoust SH, Pateiro M, Lorenzo JM (2021) Adsorption of CrystalViolet dye using activated carbon of Lemn wood and activated carbon/Fe3O4 magnetic nanocomposite from AqueousSolutions: a kinetic equilibrium and thermodynamic study. Mole 26:2241. https://doi.org/10.3390/molecules26082241

    Article  CAS  Google Scholar 

  43. Du Y, Pei M, He Y, Yu F, Guo W, Wang L (2014) Preparation, characterization and application of magnetic Fe3O4-CS for the adsorption of Orange I from aqueous solutions. PLoS One 9:e108647. https://doi.org/10.1371/journal.pone.0108647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohebali S, Bastani D, Shayesteh H (2019) Equilibrium kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: acid and CTAB-acid modified celery Apium graveolens. J Mol Struct 1176:181–193. https://doi.org/10.1016/j.molstruc.2018.08.068

    Article  CAS  Google Scholar 

  45. Scheufele FB, Staudt J, Ueda MH, Caroline R, Steffen V, Borba CE, M’odenes AN, Kroumov AD (2020) Biosorption of direct black dye by cassavaroot husks: Kinetics,equilibrium, thermodynamics and mechanism assessment. J Environ Chem Eng 8:103533. https://doi.org/10.1016/j.jece.2019.103533

    Article  CAS  Google Scholar 

  46. Alqadami AA, Naushad M, Abdalla MA, Khan MR, Alothman ZA (2016) Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium kinetic and thermodynamic studies. J Chem Eng Data 61:3806–3813. https://doi.org/10.1021/acs.jced.6b00446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Mounir Hajji from Centre National de Recherches en Sciences des Materiaux for his help with synthesis of sodium silicate.

Funding

The study was fnancially supported by National Center of Research in Material Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Andolsi Amal, Chaari Islem, Hamzaoui Ahmad Hichem: prepared the research, and interpret household survey data and wrote research report draft. Hamzaoui Ahmad Hichem, Chaari Islem: conceptualization and methodology. All authors edit and revised the manuscript and approved it to send to the journal.

Corresponding author

Correspondence to Amal Andolsi.

Ethics declarations

Competing Interests

The authors have non relevant financial or non-financial to disclose.

Ethical Approval

Not Applicable.

Consent for Publications

All the authors of the manuscript mutually agree on submission and publication in the journal.

Consent to Participate All

Authors contributed to the work and revised the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andolsi, A., Chaari, I. & Hamzaoui, A.H. Surface Modification of Magnetite Using Silica Coating: Spectroscopic, Structural, Morphological Characterization and Interaction with Crystal Violet Dye. Silicon 15, 6257–6268 (2023). https://doi.org/10.1007/s12633-023-02488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02488-2

Keywords

Navigation