Skip to main content

Advertisement

Log in

Aluminum Nitride, Silicon and Carbon Nanocages as Anode Materials in Metal-Ion Battery

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The discovery of suitable nano-materials to use as anode electrodes in Mg-ion battery and K-ion battery is very important to improve their efficiency. In this work, the potential of various silicon nanocages as anodes in metal-ion batteries are examined to propose novel materials with higher efficiency. The interaction energy (Einteraction), cell voltage (Vcell) and theoretical capacity (Ctheory) of nanocages in K-ion batteries and Mg-ion batteries are calculated in gas phase and water. Results shown that the attaching of Cl and Br can increase the Ecohesive and stability of carbon and aluminum nitride nanocages. The silicon and aluminum nitride nanocages in Mg-ion battery and K-ion battery have higher Vcell and Ctheory than corresponding carbon nanocages. The Mg-ion batteries have higher Vcell and Ctheory values than K-ion batteries. Results shown that Cl and Br attached to silicon and aluminum nitride nanocages (F-Si38, Cl-Al22N22 and Br-Al22N22) have the highest Vcell and Ctheory values in gas phase and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Iqbal A, Wang L (2022) ACS Appl Mater Interfaces 14:15324–15336

    Article  CAS  PubMed  Google Scholar 

  2. Xijun Xu, Zhang D (2021) ACS Appl Mater Interfaces 13:11007–11017

    Article  Google Scholar 

  3. Peng D, Zhang Y (2021) ACS Sustain Chem Eng 9:998–1007

    Article  CAS  Google Scholar 

  4. Yang D, Zhang C (2020) ACS Nano 14:15492–15504

    Article  CAS  PubMed  Google Scholar 

  5. Zhao D, Yin M (2020) ACS Sustain Chem Eng 8:11317–11327

    Article  CAS  Google Scholar 

  6. Chen H, Yuanke Wu (2019) ACS Appl Mater Interfaces 11:42197–42205

    Article  CAS  PubMed  Google Scholar 

  7. Xie H, Chen M (2019) ACS Appl Mater Interfaces 11:41222–41228

    Article  CAS  PubMed  Google Scholar 

  8. Luo W, Cao X (2019) ACS Appl Energy Mater 2:4567–4575

    Article  CAS  Google Scholar 

  9. Chen X, Zeng S (2019) ACS Energy Lett 4:1496–1504

    Article  CAS  Google Scholar 

  10. Deng N, Yanan K (2022) Energy Storage Mater 53:684–743

    Article  Google Scholar 

  11. Hartmann C, Kers K (2022) J Solid State Electrochem 26:2501–2514

    Article  CAS  Google Scholar 

  12. Dong Y, Zhang L (2022) Sens Actuators B Chem 368:132140

    Article  CAS  Google Scholar 

  13. Han Wu, Yuan R (2022) Carbon 198:171–178

    Article  Google Scholar 

  14. Shao H, Cleng X (2022) J Alloy Compd 918:165506

    Article  CAS  Google Scholar 

  15. Anh Tran V, Huu Do H (2022) Cluel 319:124456

    Google Scholar 

  16. Peng W, Zhang J (2022) Inorg Chem Clrontiers 9:2023–2035

    Article  CAS  Google Scholar 

  17. Zhu J, Qiao X (2022) Ionics 28:2267–2276

    Article  CAS  Google Scholar 

  18. Song Z, Wang G (2022) Chem Eng J 435:134633

    Article  CAS  Google Scholar 

  19. Xu X, Clangkun K (2022) Adv Science 9:2200247

    Article  CAS  Google Scholar 

  20. Wang P-L, Sun X-Z (2022) Rare Met 41:1304–1313

    Article  CAS  Google Scholar 

  21. Sun X, Zhang Bo (2022) Nano Today 43:101408

    Article  CAS  Google Scholar 

  22. Zhang S, Wang R (2022) Processes 10:566

    Article  CAS  Google Scholar 

  23. Huang C, Gao A (2022) Electrochim Acta 406:139872

    Article  CAS  Google Scholar 

  24. Zhu M, Xuan K (2022) Mater Chem Clrontiers 6:203–212

    CAS  Google Scholar 

  25. Zhou Y, Zhang M (2022) Chem Eng J 428:131113

    Article  CAS  Google Scholar 

  26. Zhang H, Zhang Y (2021) Ionics 27:5067–5077

    Article  CAS  Google Scholar 

  27. Sun X, Wang L, Chuanchuan K (2021) Nano Res 14:4696–4703

    Article  CAS  Google Scholar 

  28. Zhang S, Wang R (2021) J Alloy Compd 888:161316

    Article  CAS  Google Scholar 

  29. He Y, Dong C (2021) Nano Res 14:4014–4024

    Article  CAS  Google Scholar 

  30. Peng D, Zhang Y (2021) Appl Surf Sci 566:150676

    Article  CAS  Google Scholar 

  31. Hartmann C, Etter M (2021) Adv Mater 33:2101576

    Article  CAS  Google Scholar 

  32. Zhou Xu, Wang Z, Wang M (2021) Chem Eng J 422:130049

    Article  Google Scholar 

  33. Wang J, Yue X (2021) Energy Storage Mater 41:404–426

    Article  Google Scholar 

  34. Zhou C, Wan S (2021) J Power Sources 509:230401

    Article  CAS  Google Scholar 

  35. Luo Y, Shi L (2021) Carbon 182:194–202

    Article  CAS  Google Scholar 

  36. Huang C, Gao A (2021) Chem Eng J 419:129643

    Article  CAS  Google Scholar 

  37. Jin R, Ruiqian K (2021) Ceram Int 47:24625–24631

    Article  CAS  Google Scholar 

  38. Dong C, Zhou Y (2021) J Alloy Compd 875:159903

    Article  CAS  Google Scholar 

  39. Maurya O, Khaladkar S (2021) Small 17:2100361

    Article  CAS  Google Scholar 

  40. Jin R, Wang G (2021) J Electroanal Chem 895:115502

    Article  CAS  Google Scholar 

  41. Zhang Z, Feng L, Liu H, Wang L, Tang Z (2021) Inorg Chem Front 9:35–43

    Article  Google Scholar 

  42. Liu W, Zhao C, Zhou Y, Xu X, Rakkesh RA (2022) J Chem 2022:9070055

    Google Scholar 

  43. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energy Mater 6:1502588

    Article  Google Scholar 

  44. Wang M, Jiang C, Zhang S, Song X, Cheng H (2018) Nat Chem 10:667–672

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Ji B, Zheng Y, Tang Y (2023). Ang Chem Int Edi. https://doi.org/10.1002/anie.202301711

    Article  Google Scholar 

  46. Xue S, Shang J, Pu X, Zhang L, Tang Y (2023) Energy Storage Mater 55:33–41

    Article  Google Scholar 

  47. Ji B, Gou J, Zheng Y, Pu X, Wang Y, Tang Y (2023) Adv Mater 2300381. https://doi.org/10.1002/adma.202300381

  48. Fu M, Chen W, Lei Y, Yu H, Lin Y, Terrones M (2023) Adv Materials. 2300940. https://doi.org/10.1002/adma.202300940

  49. Fu M, Zhuang Q, Yu H, Chen W (2023) Electrochim Acta 447:142167

    Article  CAS  Google Scholar 

  50. Yu H, Chen Y, Wei W, Ji X, Chen L (2022). ACS Nano. https://doi.org/10.1021/acsnano.2c03398

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Chen Y, Yu H, Liu W, Kuang G, Mei L, Chen L (2022) Adv Funct Mater 32:2205600

    Article  CAS  Google Scholar 

  52. Ren R, Lai F, Lang X, Li L, Yao C, Cai K (2023) Appl Surf Sci 613:156003

    Article  CAS  Google Scholar 

  53. Li S, Ye C, Ding Y, Song Y (2022). IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2022.3200952

    Article  Google Scholar 

  54. Wu Z, Lin B, Fan J, Zhao J, Zhang Q, Li L (2022) IEEE Trans Dielectr Electr Insul 29:1651–1658

    Article  Google Scholar 

  55. Wu ZAFJ (2023). J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/acbf60

    Article  Google Scholar 

  56. Wang Z, Fu W, Hu L, Zhao M, Guo T, Hrynsphan D, Chen J (2021) Sci Total Environ 781:146686

    Article  CAS  Google Scholar 

  57. Lu S, Yin Z, Liao S, Yang B, Liu S, Liu M, Zheng W (2022) Energy Rep 8:33–50

    Article  Google Scholar 

  58. Dang W, Liao S, Yin Z, Liu M, Yin L, Zheng WJ (2023) Energy Storage 59:106469

    Article  Google Scholar 

  59. Zhang Z, Yang Q, Yu Z, Wang H, Zhang T (2022) Mater Charact. 189. https://doi.org/10.1016/j.matchar.2022.111962

  60. Cheng M, Cui Y, Yan X, Wang J, Wang X (2022) Food Hydrocolloids 124:107225

    Article  CAS  Google Scholar 

  61. Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J (2021) Bioresour Tech 327:124785

    Article  CAS  Google Scholar 

  62. Ye R, Liu P, Shi K, Yan B (2020) IEEE Access 8:214346–214357

    Article  Google Scholar 

  63. Li L, Jia S, Cheng Z, Zhang C (2023). Chemsuschem. https://doi.org/10.1002/cssc.202202330

    Article  PubMed  Google Scholar 

  64. Wang C, Sheng L, Jiang M, Lin X, Wang Q, Guo M, Jiang L (2023) J Power Sources 555:232405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our university for their computational supports.

Author information

Authors and Affiliations

Authors

Contributions

Juan Du: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation Resources and Yan Hou: Data Curation, Writing—Original Draft, Writing—Review & Editing, Visualization.

Corresponding author

Correspondence to Juan Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Conflicts of Interest/Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Hou, Y. Aluminum Nitride, Silicon and Carbon Nanocages as Anode Materials in Metal-Ion Battery. Silicon 15, 5407–5413 (2023). https://doi.org/10.1007/s12633-023-02452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02452-0

Keywords

Navigation