Skip to main content

Advertisement

Log in

Silicon Accumulation in Maize and its Effects on Demographical Traits of Fall armyworm, [Spodoptera frugiperda (J. E. Smith)]

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Fall armyworm (Spodoptera frugiperda) is a serious pest of various agricultural crops, causing heavy economic losses. Mostly, chemical pesticides are used for its management, but it has developed resistance against pesticides and other commonly used control methods. Studies have shown that the exogenous application of silicon has the potential to make plants more resistant to insect herbivores without causing any negative effects on the efficiency of natural enemies. Therefore, a laboratory experiment was conducted to test the impact of silicon dioxide (SiO2) and potassium silicate (K2SiO3) applied by foliar spray and soil drenching on its accumulation in maize and its impact on demographical traits of S. frugiperda to check its most susceptible age stage. Results of the current study revealed a significant effect of all silicon applications compared to control on survival rate, developmental duration, the reproduction rate of S. frugiperda, and silicon accumulation in maize. Furthermore, results indicated that S. frugiperda fed on the maize plants treated with foliar spray or SiO2 showed a lower intrinsic rate of growth (r), finite rate of growth (λ), and net reproduction rate (R0) compared to all other treatments. All the treatments showed a significant effect on the adult pre-oviposition period (APOP), total oviposition period (TPOP), pre-adult survival rate, and oviposition days compared to the control. Age stage-specific life expectancy (exj) and Age stage-specific reproductive values (vxj) of S. frugiperda were significantly affected in all silicon treatments. From current results, it is concluded that silicon can be used as an alternate method for the management of this destructive pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–7

    Article  Google Scholar 

  2. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e0165632

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sharanabasappa D, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi M, Pavithra H, Hegbe K et al (2018) First report of the fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manage Hortic Ecsyst 24:23–9

    Google Scholar 

  4. Cruz I, Figueiredo MdLC, Silva RBd, Silva IFd, Paula Cd, Foster JE (2012) Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith][Lepidoptera: Noctuidae]) larvae in maize. Int J Pest Manag 58(1):83–90

    Article  CAS  Google Scholar 

  5. Nagoshi RN, Meagher RL, Hay-Roe M (2014) Assessing the resolution of haplotype distributions to delineate fall armyworm (Lepidoptera: Noctuidae) migratory behaviors. J Econ Entomol 107(4):1462–1470

    Article  PubMed  Google Scholar 

  6. Nagoshi RN, Rosas-García NM, Meagher RL, Fleischer SJ, Westbrook JK, Sappington TW et al (2015) Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J Econ Entomol 108(1):135–144

    Article  CAS  PubMed  Google Scholar 

  7. Westbrook J, Nagoshi R, Meagher R, Fleischer S, Jairam S (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60(2):255–267

    Article  CAS  PubMed  Google Scholar 

  8. Riggin TM, Wiseman B, Isenhour DJ, Espelie KE (2012) Incidence of fall armyworm (Lepidoptera: Noctuidae) parasitoids on resistant and susceptible com genotypes. Environ Entomol 21(4):888–895

    Article  Google Scholar 

  9. Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M et al (2022) Satellitome analysis and transposable elements comparison in geographically distant populations of Spodoptera frugiperda. Life 12(4):521. https://doi.org/10.3390/life12040521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Juárez ML, Murúa MG, García MG, Ontivero M, Vera MT, Vilardi JC et al (2012) Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol 105(2):573–582

    Article  PubMed  Google Scholar 

  11. Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol 85:186–90

    Article  CAS  Google Scholar 

  12. Van den Berg J, Prasanna BM, Midega CA, Ronald PC, Carrière Y, Tabashnik BE (2021) Managing fall armyworm in Africa: can Bt maize sustainably improve control? J Econ Entomol 114(5):1934–1949

    Article  PubMed  Google Scholar 

  13. FAO I, UNICEF. WFP, WHO (2020) The state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets. 2020

  14. X-x Sun, C-x Hu, H-r Jia, Q-l Wu, X-j Shen, S-y Zhao et al (2021) Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J Integr Agric 20(3):664–672

    Article  Google Scholar 

  15. Zhang D-d, Zhao S-y, Wu Q-l, Li Y-y, Wu K-m (2021) Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China. J Integr Agric 20(3):764–71

    Article  Google Scholar 

  16. Yang X, Liu Y, Luo M, Li Y, Wang W, Wan F et al (2019) Spodoptera frugiperda (JE Smith) was first discovered in Jiangcheng County of Yunnan Province in southwestern China. Yunnan Agric 1:72

    Google Scholar 

  17. Idrees A, Qadir ZA, Afzal A, Ranran Q, Li J (2022) Laboratory efficacy of selected synthetic insecticides against second instar invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. PLoS ONE 17(5):e0265265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z-K, Li X-L, Tan X-F, Yang M-F, Idrees A, Liu J-F et al (2022) Sublethal Effects of Emamectin Benzoate on Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Agriculture 12(7):959

    Article  Google Scholar 

  19. Nisar MS, Ali S, Hussain T, Ramzan H, Niaz Y, Haq IU et al (2022) Toxic and repellent impacts of botanical oils against Callosobruchus maculatus (Bruchidae: Coleoptera) in stored cowpea [Vigna unguiculata (L.) Walp.]. PLOS ONE. 17(5):e0267987. https://doi.org/10.1371/journal.pone.0267987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deshmukh S, Pavithra H, Kalleshwaraswamy C, Shivanna B, Maruthi M, Mota-Sanchez D (2020) Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize in India. Fla Entomol 103(2):221–227

    Article  CAS  Google Scholar 

  21. Deshmukh SS, Kalleshwaraswamy C, Prasanna B, Sannathimmappa H, Kavyashree B, Sharath K et al (2021) Economic analysis of pesticide expenditure for managing the invasive fall armyworm, Spodoptera frugiperda (JE Smith) by maize farmers in Karnataka, India. Curr Sci 121(11):1487–1492

    Article  Google Scholar 

  22. Idrees A, Qadir ZA, Akutse KS, Afzal A, Hussain M, Islam W et al (2021) Effectiveness of entomopathogenic fungi on immature stages and feeding performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects 12(11):1044

    Article  PubMed  PubMed Central  Google Scholar 

  23. Idrees A, Afzal A, Qadir ZA, Li J (2022) Bioassays of Beauveria bassiana Isolates against the Fall Armyworm, Spodoptera frugiperda. J Fungus 8(7):717

    Article  Google Scholar 

  24. Ahmed KS, Idrees A, Majeed MZ, Majeed MI, Shehzad MZ, Ullah MI et al (2022) Synergized Toxicity of Promising Plant Extracts and Synthetic Chemicals against Fall Armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) in Pakistan. Agronomy 12(6):1289

    Article  CAS  Google Scholar 

  25. Idrees A, Qasim M, Ali H, Qadir ZA, Idrees A, Bashir M et al (2016) Acaricidal potential of some botanicals against the stored grain mites, Rhizoglyphus tritici. J Entomol Zool Stud 4:611–617

    Google Scholar 

  26. Idrees A, Zhang H, Luo M, Thu M, Cai P, Islam W et al (2017) Protein baits, volatile compounds and irradiation influence the expression profiles of odorant-binding protein genes in Bactrocera dorsalis (Diptera: Tephritidae). Appl Ecol Environ Res 15(4):1883–1899

    Article  Google Scholar 

  27. He W, Yang M, Li Z, Qiu J, Liu F, Qu X et al (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. J Crop Prot 67:20–25

    Article  CAS  Google Scholar 

  28. Hou M, Han Y (2010) Silicon-mediated rice plant resistance to the Asiatic rice borer (Lepidoptera: Crambidae): effects of silicon amendment and rice varietal resistance. J Econ Entomol 103(4):1412–1419

    Article  CAS  PubMed  Google Scholar 

  29. Haq IU, Khurshid A, Inayat R, Kexin Z, Changzhong L, Ali S et al (2021) Silicon-based induced resistance in maize against fall armyworm [Spodoptera frugiperda (Lepidoptera: Noctuidae)]. Plos one 16(11):e0259749. https://doi.org/10.1371/journal.pone.0259749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parrella MP, Costamagna TP, Kaspi R (2006) The addition of potassium silicate to the fertilizer mix to suppress Liriomyza leafminers attacking chrysanthemums. VIII International Symposium on Protected Cultivation in Mild Winter Climates: Advances in Soil and Soilless Cultivation under 747, p 365–70

  31. Correa RS, Moraes JC, Auad AM, Carvalho GA (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) biotype B. Neotrop Entomol 34:429–433

    Article  CAS  Google Scholar 

  32. Dias PA, Sampaio MV, Rodrigues MP, Korndörfer AP, Oliveira RS, Ferreira SE et al (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environ Entomol 43(4):949–956. https://doi.org/10.1603/en13234

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moraes JC, Ferreira RS, Costa RR (2009) Resistance inducers to the whitefly Bemisia tabaci Biotype B (GENN., 1889)(Hemiptera: Aleyrodidae) in soybeans. Cienc Agrotecnologia 33:1260–4

    Article  CAS  Google Scholar 

  35. Hogenhout SA, Bos JI (2011) Effector proteins that modulate plant–insect interactions. Curr Opin Plant Biol 14(4):422–428

    Article  CAS  PubMed  Google Scholar 

  36. Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015) Silicon-mediated resistance of A rabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16(6):572–582

    Article  CAS  PubMed  Google Scholar 

  37. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140:111596. https://doi.org/10.1016/j.biopha.2021.111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    Article  CAS  Google Scholar 

  39. Ahn JJ, Choi KS (2022) Population parameters and growth of riptortus pedestris (Fabricius)(Hemiptera: Alydidae) under fluctuating temperature. Insects 13(2):113

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berber G, Birgücü AK (2022) Effects of two different isolates of Entomopathogen Fungus, Beauveria bassiana (Balsamo) Vuillemin on Myzus persicae Sulzer (Hemiptera: Aphididae). J Agric Sci 28(1):121–32

    Google Scholar 

  41. Younas H, Razaq M, Farooq MO, Saeed R (2022) Host plants of Phenacoccus solenopsis (Tinsley) affect parasitism of Aenasius bambawalei (Hayat). Phytoparasitica:1–13

  42. Abdel-Khalek AA, Momen FM (2022) Biology and life table parameters of Proprioseiopsis lindquisti on three eriophyid mites (Acari: Phytoseiidae: Eriophyidae). Persian J Acarol 11(1):59–69

    Google Scholar 

  43. Huang Y-B, Chi H (2011) The age-stage, two-sex life table with an offspring sex ratio dependent on female age. J Agric For 60:337–345

    Google Scholar 

  44. Chi H, Getz WM (1988) Mass rearing and harvesting based on an age-stage, two-sex life table: a potato tuberworm (Lepidoptera: Gelechiidae) case study. Environ Entomol 17(1):18–25

    Article  Google Scholar 

  45. Zheng X-M, Tao Y-L, Chi H, Wan F-H, Chu D (2017) Adaptability of small brown planthopper to four rice cultivars using life table and population projection method. Sci Rep 7(1):1–8

    Google Scholar 

  46. Acevedo FE, Peiffer M, Ray S, Tan C-W, Felton GW (2021) Silicon-mediated enhancement of herbivore resistance in agricultural crops. Front Plant Sci 12:116

    Article  Google Scholar 

  47. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24(2):225–240

    Google Scholar 

  48. Chi H, Su H-Y (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35(1):10–21

    Article  Google Scholar 

  49. Tuan SJ, Lee CC, Chi H (2014) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci 70(5):805–13

    Article  CAS  PubMed  Google Scholar 

  50. Tibshirani RJ, Efron B (1993) An introduction to the bootstrap. Monogr Stat Appl Probab 57:1–436

    Google Scholar 

  51. Wei M, Chi H, Guo Y, Li X, Zhao L, Ma R (2020) Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J Econ Entomol 113(5):2343–53

    Article  PubMed  Google Scholar 

  52. Ma J, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant soil 126(1):115–119

    Article  CAS  Google Scholar 

  53. Ávila FW, Baliza DP, Faquin V, Araujo JL, Ramos SJ (2010) Silicon-nitrogen interaction in rice cultivated under nutrient solution. Rev Cienc Agron 41(2):184

    Article  Google Scholar 

  54. Freitas LBd, Coelho EM, Maia SCM, Silva TRB (2011) Adubação foliar com silício na cultura do milho. Rev. Ceres 58:262–7

    Article  Google Scholar 

  55. Abbasi A, Sufyan M, Ashraf HJ, Zaman Qu, Haq IU, Ahmad Z et al (2022) Determination of silicon accumulation in Non-Bt cotton (Gossypium hirsutum) plants and its impact on fecundity and biology of whitefly (Bemisia tabaci) under controlled conditions. Sustainability 14(17):10996. https://doi.org/10.3390/su141710996

    Article  CAS  Google Scholar 

  56. Dogramaci M, Arthurs SP, Chen J, Osborne L (2013) Silicon applications have minimal effects on Scirtothrips dorsalis (Thysanoptera: Thripidae) populations on pepper plant, Capsicum annum L. Fla Entomol 96(1):48–54, 7. https://doi.org/10.1653/024.096.0106

  57. Fageria N, Filho MB, Moreira A, Guimarães C (2009) Foliar fertilization of crop plants. J Plant Nutr 32(6):1044–1064

    Article  CAS  Google Scholar 

  58. Papadakis IE, Sotiropoulos TE, Therios IN (2007) Mobility of iron and manganese within two citrus genotypes after foliar applications of iron sulfate and manganese sulfate. J Plant Nutr 30(9):1385–1396

    Article  CAS  Google Scholar 

  59. Abbasi A, Sufyan M, Arif MJ, Sahi ST (2020) Effect of silicon on tritrophic interaction of cotton, Gossypium hirsutum (Linnaeus), Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) and the predator, Chrysoperla carnea (Stephens)(Neuroptera: Chrysopidae). Arthropod Plant Interact 14(6):717–725

    Article  Google Scholar 

  60. Haq IU, Zhang K, Ali S, Majid M, Ashraf HJ, Khurshid A et al (2022) Effectiveness of silicon on immature stages of the fall armyworm [Spodoptera frugiperda (JE Smith)]. J King Saud Univ Sci 34(6):102152. https://doi.org/10.1016/j.jksus.2022.102152

    Article  Google Scholar 

  61. Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125(1):103–110

    Article  CAS  Google Scholar 

  62. Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78(1):281–291

    Article  PubMed  Google Scholar 

  63. Pereira P, Nascimento AM, de Souza BHS, Peñaflor MFGV (2021) Silicon supplementation of maize impacts fall armyworm colonization and increases predator attraction. Neotrop Entomol 50(4):654–661

    Article  CAS  PubMed  Google Scholar 

  64. Goussain MM, Moraes JC, Carvalho JG, Nogueira NL, Rossi ML (2002) Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae). Neotrop Entomol 31:305–310

    Article  CAS  Google Scholar 

  65. Nascimento A, Assis F, Moraes J, Souza B (2018) Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith). J Appl Entomol 142(1–2):241–249

    Article  CAS  Google Scholar 

  66. Nagaratna W, Kalleshwaraswamy CM, Dhananjaya BC, Sharanabasappa, Prakash NB (2022) Effect of silicon and plant growth regulators on the biology and fitness of fall armyworm, Spodoptera frugiperda, a recently invaded pest of maize in India. Silicon 14(3):783–93. https://doi.org/10.1007/s12633-020-00901-8

    Article  CAS  Google Scholar 

  67. Alvarenga R, Moraes J, Auad A, Coelho M, Nascimento A (2017) Induction of resistance of corn plants to Spodoptera frugiperda (JE Smith, 1797)(Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bull Entomol Res 107(4):527–533

    Article  CAS  PubMed  Google Scholar 

  68. He W, Yang M, Li Z, Qiu J, Liu F, Qu X et al (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Prot 67:20–25

    Article  CAS  Google Scholar 

  69. Silva AA, Alvarenga R, Moraes JC, Alcantra E (2014) Biologia de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) em algodoeiro de fibra colorida tratado com silício. EntomoBrasilis 7(1):65–68

    Article  Google Scholar 

  70. Gomes FB, Moraes JC, Santos CDD, Antunes CS (2008) Uso de silício como indutor de resistência em batata a Myzus persicae (Sulzer)(Hemiptera: Aphididae). Neotrop Entomol 37(2):185–90

    Article  CAS  PubMed  Google Scholar 

  71. Tatagiba SD, Rodrigues FA, Filippi MCC, Silva GB, Silva LC (2014) Physiological responses of rice plants supplied with silicon to Monographella albescens Infection. J Phytopathol 162(9):596–606

    Article  CAS  Google Scholar 

  72. Yang L, Han Y, Li P, Wen L, Hou M (2017) Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Sci Rep 7(1):1–7. https://doi.org/10.1038/s41598-017-01060-4

    Article  CAS  Google Scholar 

  73. Abbasi A, Sufyan M, Arif MJ, Sahi ST (2020) Effect of silicon on oviposition preference and biology of Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) feeding on Gossypium hirsutum (Linnaeus). Int J Pest Manag:1–11

Download references

Funding

This work is supported by the Science Project of Agriculture and Rural Department of Gansu Province; grant number GZB20191105.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Inzamam Ul Haq, Chang-Zhong Liu and Atif Idrees; methodology, Inzamam Ul Haq, Chunchun Li, Ke-Xin Zhang and Muhammad Yasin; software, Inzamam Ul Haq, Atif Idrees and Asim Abbasi; validation, Chang-Zhong Liu, Jamshaid Iqbal and Shahbaz Ali; formal analysis, Inzamam Ul Haq, Atif Idrees and Muhammad Asad; investigation, Chang-Zhong Liu; resources, Chang-Zhong Liu; data curation, Inzamam Ul Haq, Chunchun Li, Shahbaz Ali and Asim Abbasi; writing—original draft preparation, Inzamam Ul Haq, Chunchun Li, Muhammad Adnan Asghar and Muhammad Asad; writing—review and editing, Inzamam Ul Haq, Chang-Zhong Liu, Atif Idrees, Asim Abbasi and Shahbaz Ali; visualization, Chang-Zhong Liu; supervision, Chang-Zhong Liu; project administration, Chang-Zhong Liu; funding acquisition, Inzamam Ul Haq and Chang-Zhong Liu. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chang-Zhong Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

All authors confirm that they have contribution in this article.

Consent for Publication

The authors agree to publish this article in its current form.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 716 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, I., Idrees, A., Abbasi, A. et al. Silicon Accumulation in Maize and its Effects on Demographical Traits of Fall armyworm, [Spodoptera frugiperda (J. E. Smith)]. Silicon 15, 3269–3281 (2023). https://doi.org/10.1007/s12633-022-02250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02250-0

Keywords

Navigation