Skip to main content
Log in

Impact of traps on DC, analog/RF, and linearity performance of Ferro-TFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, we investigated the influence of non-identical interface trap charges (ITCs) (positive or donor and negative or acceptor) on the behavior of ferroelectric gate oxide tunnel field-effect transistor (Ferro-TFET) concerning various electrical parameters such as DC, analog/RF, and linearity distortion parameters. The conventional Ferro-TFET is optimized for reducing ambipolarity and improving on-current through source-gate overlap and gate-drain underlap. The optimized structure is considered for 5 nm gate overlap to source and 20 nm gate underlap to drain. Sentaurus TCAD device simulator is used to investigate distinct behavior metrics like transfer characteristics, Cgd, Cgs, Cgg,cut-off frequency (fT), and gain-bandwidth product (GBP) for the presence of a different distribution of ITCs (uniform and Gaussian trap distribution) on the optimized Ferro-TFET structure. Further to scrutinize the influence of ITCs on linearity behavior of Ferro-TFET, the variables such as gm2, gm3, VIP2, VIP3, IIP3, IMD3, and 1-dB compression point are analyzed. In this study, the Ferro-TFET with ITCs at gate oxide/ channel interface shows better immunity in terms of various performance metrics in contrast to the conventional TFET structures. Therefore, this Ferro-TFET is explored for analog, and RF applications as it shows superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Yan R-H, Abbas O, Lee KF (1992) Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans Electron Devices 39(7):1704–1710

    Article  CAS  Google Scholar 

  2. International Technology Roadmap for Semiconductors—2015 Edition, 2015, [online] Available: http://www.itrs2.net

  3. Boucart K, Ionescu AM (2007) Double gate tunnel FET with high gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

    Article  CAS  Google Scholar 

  4. Kim SW, Kim JH, Liu T-JK, Choi WY, Park B-G (2016) Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans Electron Devices 63(4):1774–1778

    Article  CAS  Google Scholar 

  5. Li W, Liu H, Wang S, Chen S (2016) Analog/RF performance of four different tunneling FETs with the recessed channels. Superlattices and Microstructure 100:1238–1248

    Article  CAS  Google Scholar 

  6. Saurabh S, Kumar MJ (2009) Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor (TFET), theoretical investigation and analysis. Jpn J Appl Phys 48(6):1–7

    Article  Google Scholar 

  7. Nayfeh OM, Chleirigh CN, Hennessy J, Gomez L, Hoyt JL, Antoniadis DA (2008) Design of tunneling field-effect transistors using strained silicon/strained Germanium type-II staggered heterojunctions. IEEE Electron Devices Lett 29(9):1074–1077

    Article  CAS  Google Scholar 

  8. Mohata D, Mookerjea S, Agrawal A (2011) Experimental staggered source and N+ pocket-doped channel III-V tunnel field-effect transistors and their scalabilities. Appl Phys Exp 4(2):1–3

    Article  Google Scholar 

  9. Cao W, Yao CJ, Jiao GF, Huang D, Yu HY, Li M-F (2011) Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans Electron Devices 58(7):2122–2126

    Article  CAS  Google Scholar 

  10. Jhaveri R, Nagavarapu NV, Woo JCS (2011) Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans Electron Devices 58(1):80–86

    Article  CAS  Google Scholar 

  11. Chang H-Y, Adams B, Chien P-Y, Li J, Woo JCS (2013) Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans Electron Devices 60(1):92–96

    Article  CAS  Google Scholar 

  12. Talukdar J, Choudhuri B, Mummaneni K (2021) Impact of temperature counting the effect of back gate bias on the performance of extended source tunnel FET (ESTFET) with δpSiGe pocket layer. Appl Phys A 127(24):1–14

    Google Scholar 

  13. Talukdar J, Rawat G, Mummaneni K (2020) A Novel Extended Source TFET with δp+- SiGe Layer. SILICON 12:2273–2281

    Article  Google Scholar 

  14. Goswami R, Bhowmick B, Baishya S (2015) Electrical noise in Circular Gate Tunnel FET in presence of interface traps. Superlattices Microstruct 86:342–354

    Article  CAS  Google Scholar 

  15. Lattanzio L, Salvatore GA, Ionescu AM (2010) Non-hysteretic ferroelectric tunnel FET with improved conductance at Curie temperature. 68th Device Research Conference, South Bend, IN, 67–68, https://doi.org/10.1109/DRC.2010.5551937

  16. Hu C (2008) Green transistor as a solution to the IC power crisis, 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, 16–20, https://doi.org/10.1109/ICSICT.2008.4735116

  17. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337. https://doi.org/10.1038/nature10679

    Article  CAS  PubMed  Google Scholar 

  18. Chowdhury N, Azad SMF, Khosru QDM (2014) Negative capacitance tunnel field effect transistor: A novel device with low subthreshold swing and high on current. ECS Transaction 58(16):1–8. https://doi.org/10.1149/05816.0001ecst

    Article  Google Scholar 

  19. Khan AI, Yeung CW, Chenming Hu, Salahuddin S (2011) Ferroelectric negative capacitance MOSFET: Capacitance tuning &antiferroelectric operation. International Electron Devices Meeting, Washington, DC. 11.3.1–11.3.4, https://doi.org/10.1109/IEDM.2011.6131532

  20. Salahuddin S, Datta S (2008) Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett 8(2):405–410. https://doi.org/10.1021/nl071804g

    Article  CAS  PubMed  Google Scholar 

  21. Salahuddin S, Datta S (2008) Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?. IEEE International Electron Devices Meeting, San Francisco, CA, 2008. 1-4, https://doi.org/10.1109/IEDM.2008.4796789

  22. Lattanzio L, Salvatore GA, Ionescu AM (2010) Non-hysteretic ferroelectric tunnel FET with improved conductance at Curie temperature. 68th Device Research Conference, South Bend. 67–68, https://doi.org/10.1109/DRC.2010.5551937

  23. Yeung CW, Khan AI, Salahuddin S, Hu C (2013) Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs. Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S), Berkeley. 1–2. https://doi.org/10.1109/E3S.2013.6705876

  24. Jo J et al (2015) Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices”. Nano Lett 15(7):4553–4556. https://doi.org/10.1021/acs.nanolett.5b01130

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J et al (2018) Hysteresis Reduction in Negative Capacitance Ge PFETs Enabled by Modulating Ferroelectric Properties in HfZrOx. IEEE Journal of the Electron Devices Society 6:41–48. https://doi.org/10.1109/JEDS.2017.2764678

    Article  CAS  Google Scholar 

  26. Ko E, Lee JW, Shin C (2017) Negative Capacitance FinFET With Sub-20-mV/decade Subthreshold Slope and Minimal Hysteresis of 0.48 V. in IEEE Electron Device Letters. 38 (4): 418–421. https://doi.org/10.1109/LED.2017.2672967.

  27. McGuire FA, Lin Y, Rayner B, Franklin AD (2017) MoS2 negative capacitance FETs with CMOS-compatible hafnium zirconium oxide. 75th Annual Device Research Conference (DRC), South Bend. 1–2, https://doi.org/10.1109/DRC.2017.7999478

  28. Zhou J et al (2017) Ferroelectric Negative Capacitance GeSn PFETs With Sub-20 mV/decade Subthreshold Swing. IEEE Electron Device Lett 38(8):1157–1160. https://doi.org/10.1109/LED.2017.2714178

    Article  CAS  Google Scholar 

  29. Saeidi A, Biswas A, Ionescu AM (2016) Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric. Solid-State Electron 124:16–23. https://doi.org/10.1016/j.sse.2016.07.025

    Article  CAS  Google Scholar 

  30. Kumar M, Jit S (2015) A Novel Four-Terminal Ferroelectric Tunnel FET for Quasi-Ideal Switch. IEEE Trans Nanotechnol 14(4):600–602. https://doi.org/10.1109/TNANO.2015.2427195

    Article  CAS  Google Scholar 

  31. Choi WY, Park B, Lee JD, Liu TK (2007) Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745. https://doi.org/10.1109/LED.2007.901273

    Article  CAS  Google Scholar 

  32. Ionescu AM, Lattanzio L, Salvatore GA, De Michielis L, Boucart K, Bouvet D (2010) The Hysteretic Ferroelectric Tunnel FET,". IEEE Trans Electron Devices 57(12):3518–3524. https://doi.org/10.1109/TED.2010.2079531

    Article  CAS  Google Scholar 

  33. Kobayashi M, Jang K, Ueyama N, Hiramoto T (2017) Negative Capacitance for Boosting Tunnel FET performance. IEEE Trans Nanotechnol 16(2):253–258. https://doi.org/10.1109/TNANO.2017.2658688

    Article  CAS  Google Scholar 

  34. Landau LD, Khalatnikov IM (1954) On the anomalous absorption of sound near a second order phase transition point. Dokl Akad Nauk SSSR 96:469–472

    Google Scholar 

  35. Tu L, Wang X, Wang J, Meng X, Chu J (2018) Ferroelectric Negative Capacitance Field Effect Transistor. Advance Electron Mater 4 (11): 1800231:1–17. https://doi.org/10.1002/aelm.201800231

  36. Saeidi A, Jazaeri F, Stolichnov I, Ionescu AM (2016) Double-Gate Negative-Capacitance MOSFET With PZT Gate-Stack on Ultra-Thin Body SOI: An Experimentally Calibrated Simulation Study of Device Performance. IEEE Trans Electron Devices 63(12):4678–4684. https://doi.org/10.1109/TED.2016.2616035

    Article  Google Scholar 

  37. Saeidi A et al (2017) Negative Capacitance as Performance Booster for Tunnel FETs and MOSFETs: An Experimental Study. IEEE Electron Device Lett 38(10):1485–1488. https://doi.org/10.1109/LED.2017.2734943

    Article  CAS  Google Scholar 

  38. Saeidi A et al (2018) Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance. Nanotechnology, 29 (9): 095202:1–8 https://doi.org/10.1088/1361-6528/aaa590

  39. Das B, Bhowmick B (2019) Noise behavior of ferro electric tunnel FET. Microelectronic Journal 96:104677–104682. https://doi.org/10.1016/j.mejo.2019.104677

    Article  CAS  Google Scholar 

  40. Das B, Bhowmick B (2021) Effect of Curie Temperature on Ferroelectric Tunnel FET and Its RF/Analog Performance. IEEE Trans Ultrason Ferroelectr Freq Control 68(4):1437–1441. https://doi.org/10.1109/TUFFC.2020.3033761

    Article  PubMed  Google Scholar 

  41. Wang R et al (2013) Investigations on line-edge roughness (LER) and line-width roughness (LWR) in nanoscale CMOS technology: Part II— Experimental results and impacts on device variability. IEEE Trans Electron Devices 60(11):3676–3682

    Article  Google Scholar 

  42. Pala MG, Esseni D, Conzatti F (2012) Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: A full quantum study. Proc. IEEE IEDM, San Francisco, CA, USA. pp. 1–4

  43. Madan J, Chaujar R (2016) Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans Device Mater Rel 16(2):227–234

    Article  CAS  Google Scholar 

  44. Venkatesh P, Nigam K, Pandey S, Sharma D, Kondekar PN (2017) Impact of interface trap charges on performance of electrically dopedtunnel FET with heterogeneous gate dielectric. IEEE Trans Device Mater Rel 17(1):245–252

    Article  CAS  Google Scholar 

  45. Singh KS, Kumar S, Nigam K (2020) Impact of Interface Trap Charges on Analog/RF and Linearity Performances of Dual-Material Gate-Oxide-Stack Double-Gate TFET. IEEE Trans Device Mater Reliab 20(2):404–412. https://doi.org/10.1109/TDMR.2020.2984669

    Article  CAS  Google Scholar 

  46. TCAD Sentaurus Device User’s Manual, Mountain View, CA, USA:Synopsys, Inc., 2010.

  47. Avci UE, Morris DH, Young IA (2015) Tunnel field-effect transistors: Prospects and challenges”. IEEE J Electron Devices Soc 3(3):88–95

    Article  Google Scholar 

  48. Qiu Y, Wang R, Huang Q, Huang R (2014) A comparative study onthe impacts of interface traps on tunneling FET and MOSFET. IEEE Trans Electron Devices 61(5):1284–1291

    Article  CAS  Google Scholar 

  49. Chiang T (2011) A compact model for threshold voltage of surrounding gate MOSFETs with localized interface trapped charges. IEEE Trans Electron Devices 58(2):567–571

    Article  Google Scholar 

  50. Shabde S, Bhattacharyya A, Kao RS, Muller RS (1988) Analysis of MOSFET degradation due to hot-electron stress in terms of interface state and fixed-charge generation. Solid State Electron 31(11):1603–1610

    Article  Google Scholar 

  51. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett 30(10):1102–1104

    Article  CAS  Google Scholar 

  52. Singh S, Sinha R, Kondekar PN (2018) Impact of PZT gate-stack induced negative capacitance on analogue/RF figures-of-merits of electrostatically-doped ferroelectric Schottky-barrier tunnel FET. IET Circuits Devices Syst 13(4):435–551

    Article  Google Scholar 

  53. Zare M, Peyravi F, Hosseini SE (2020) Impact of Hetero-Dielectric Ferroelectric Gate Stack on Analog/RF Performance of Tunnel FET. J Electron Mater 49:5638–5646. https://doi.org/10.1007/s11664-020-08315-3

    Article  CAS  Google Scholar 

  54. Alper C, De Michielis L, Dag˘tekin N, Lattanzio L, Bouvet D, Ionescu AM (2013) Tunnel FET with non-uniform gate capacitance for improved device and circuit level performance. Solid-State Electron 84:205–210

  55. Jiang Z, Zhuang Y, Li C, Wang P, Liu Y (2015) Journal of Electrical and Computer Engineering https://doi.org/10.1155/2015/630178.

  56. Madan J, Chaujar R (2016) Interfacial Charge Analysis of Heterogeneous Gate Dielectric-Gate All Around-Tunnel FET for Improved Device Reliability. IEEE Trans. on Device and Materials Reliability 16 (2): 227–234

  57. Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An Investigation of Linearity Performance and Intermodulation Distortion of GME CGT MOSFET for RFIC Design. IEEE Trans Electron Devices 59(12):3263–3268

    Article  Google Scholar 

  58. Adan AO, Yoshimasu T, Shitara S, Tanba N, Fukurni M (2002) Linearity and low-noise performance of SOI MOSFETs for RF applications. IEEE Trans Electron Devices 49(5):881–888

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept, Manuscript writing – Basab Das.

Review and editing- Dr. Brinda Bhowmick.

Corresponding author

Correspondence to Basab Das.

Ethics declarations

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Research involving human participants and/or animals

Not Applicable.

Informed consent

Not Applicable.

Competing interests

Authors do not have any competing interest in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Bhowmick, B. Impact of traps on DC, analog/RF, and linearity performance of Ferro-TFET. Silicon 15, 2359–2369 (2023). https://doi.org/10.1007/s12633-022-02167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02167-8

Keywords

Navigation