Skip to main content
Log in

Influence of Argon Gas Flow Rate on Oxygen and Carbon Impurities Concentration in Multicrystalline Silicon Grown by Directional Solidification Furnace: Numerical and Experimental Investigation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The quality of the multi-crystalline silicon ingot mainly depends on the defects and impurity distribution. The impurities originate from the various furnace parts and feedstock. The argon gas which acts as carrier gas plays an important role to reduce the chemical reaction inside the furnace. The reduction of carbon and oxygen concentration results in the reduction of SiO, CO and SiC formation. Various argon gas flow rates (5 LPM to 30 LPM) are simulated and C, O, CO and SiO concentrations were analysed. By increasing the argon gas flow rate, the SiO gas in the melt-free surface gets reduced from 6.9E2 to 5.1E1ppma. Also, it prevents CO gas formation in the melt-free surface. Oxygen concentration is lower than the concentration required for LID for 25 LPM and 30 LPM. From the 20 LPM, mc-Si ingot has Carbon concentration lower than the critical concentration required for SiC formation. The experimental result of 25 LPM Argon gas flow rate is compared with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovolt Res Appl 29(1):3–15

    Article  Google Scholar 

  2. Li Z, Liu L, Liu X, Zhang Y, Xiong J (2012). J Crts Growth 360:87–91

    Article  CAS  Google Scholar 

  3. Wang S, Fang HS, Zhao CJ, Zhang Z, Zhang MJ, Int JFX (2015). J Heat Mass Transf 84:370–375

    Article  CAS  Google Scholar 

  4. Machida N, Suzuki Y, Abe K, Ono N, Kida M, Shimizu Y (1998). J. Crst. Growth 186(3):362–368

    Article  CAS  Google Scholar 

  5. Su W, Li J, Li C, Yang W, Wang J (2021). Silicon:1–7

  6. Li Z, Liu L, Ma W, Kakimoto K (2011). J. Crst. Growth 318(1):298–303

    Article  CAS  Google Scholar 

  7. Bellmann MP, Lindholm D (2014). J Crst Growth 399:33–38

    Article  CAS  Google Scholar 

  8. Li X, Yang Y-C, Hsu C-M, Tseng H-W, Zhang J, Yang C-F (2021). Sensors and Materials 33(8):2607–2618

    Article  CAS  Google Scholar 

  9. Nakano S, Liu LJ, Chen XJ, Matsuo H, Kakimoto K, Crst J (2009). Growth 311(4):1051–1055

    Article  CAS  Google Scholar 

  10. Kumar M, Avinash MS, Ramasamy P (2020). Silicon:1–10

  11. Ida Z, Chen J-C, Nguyen THT (2018) In MATEC Web of Conferences, vol. 204, p. 05013. EDP Sciences,

  12. Gao B, Nakano S, Kakimoto K (2011). J Crst Growth 318(1):255–258

    Article  CAS  Google Scholar 

  13. Qi X, Liu L, Ma W (2017). J. Crst. Growth 468:933–938

    Article  CAS  Google Scholar 

  14. Saitoh T, Wang X, Hashigami H, Abe T, Igarashi T, Glunz S, Rein S et al (2001). Sol Energy Mater Sol Cells 65(1–4):277–285

    Article  CAS  Google Scholar 

  15. Kesavan V, Srinivasan M, Ramasamy P (2019) The influence of multiple-heaters on the reduction of impurities in mc-Si for directional solidification. silicon 11(3):1335–1344

    Article  CAS  Google Scholar 

  16. Gao B, Nakano S, Kakimoto K (2013) Reduction of oxygen impurity in multicrystalline silicon production. Int J Photoener 2013

  17. Sanmugavel S, et al. (2017) "Effect of heater design on the melt crystal interface." AIP Conf Proceed. Vol. 1832. No. 1. AIP Publishing LLC,

  18. Vorob’ev AN, Sid’ko AP, Kalaev VV (2014). J. Crst. Growth 386:226–234

    Article  Google Scholar 

  19. Lan CW, Hsu C, Nakajima K (2015) In handbook of crystal growth. Elsevier, pp 373–411

    Book  Google Scholar 

  20. Giannattasio A, Senkader S, Azam S, Falster RJ, Wilshaw PR (2003). Microelectron Eng 70(1):125–130

    Article  CAS  Google Scholar 

  21. Matsuo, H., Ganesh, R. B., Nakano, S., Liu, L., Kangawa, Y., Arafune, K., ... & Kakimoto, K. J. Crst. Growth, (2008), 310(22), 4666–4671

  22. Kerkar F, Kheloufi A, Dokhan N, Ouadjaout D, Belhousse S, Medjahed S, Laib K (2020). Silicon 12(3):473–478

    Article  CAS  Google Scholar 

  23. Lindroos J, Savin H (2016). Sol Energy Mater Sol 147:115–126

    Article  CAS  Google Scholar 

  24. Hull R Ed. (1999) Properties of crystalline silicon (no. 20. IET)

  25. Xi Z, Tang J, Deng H, Yang D, Que D (2007). Sol Energy Mater Sol 91(18):1688–1691

    Article  CAS  Google Scholar 

  26. Smirnov AD, Kalaev VV (2008). J Crst Growth 310(12):2970–2976

    Article  CAS  Google Scholar 

  27. Liu X, Yan G, Hong R (2015). J Mater Sci Technol 31(11):1094–1100

    Article  CAS  Google Scholar 

  28. Kolbesen BO, Mühlbauer A (1982) Solid state. Electron Lett 25(8):759–775

    CAS  Google Scholar 

  29. Akiyama N, Yatsurugi Y, Endo Y, Imayoshi Z, Nozaki T (1973). Appl Phys Lett 22(12):630–631

    Article  CAS  Google Scholar 

  30. Sivaraj D, Kesavan V, Keerthivasan T, Kumar MA, Srinivasan M, Ramasamy P (2022) Investigation of orientation, surface morphology, impurity concentration and reflectivity of the multi-crystalline silicon wafers. Mat Chem Phys 125932

Download references

Acknowledgements

This work is supported by the Department of Science and Technology, Government of India (Order No. DST/TMD/CERI/RES/2020/7 dated 31/12/2020).

Funding

This work is supported by the Department of Science and Technology, Government of India (Order No. DST/TMD/CERI/RES/2020/7 dated 31/12/2020).

Author information

Authors and Affiliations

Authors

Contributions

S. Sugunraj Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Resources, Writing - Original Draft, Writing - Review & Editing

G. Aravindan Methodology, Formal analysis, Investigation

M. Srinivasan Supervision, Visualization

P. Ramasamy Supervision

Corresponding author

Correspondence to M. Srinivasan.

Ethics declarations

Compliance with Ethical Standards

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugunraj, S., Aravindan, G., Srinivasan, M. et al. Influence of Argon Gas Flow Rate on Oxygen and Carbon Impurities Concentration in Multicrystalline Silicon Grown by Directional Solidification Furnace: Numerical and Experimental Investigation. Silicon 15, 1701–1724 (2023). https://doi.org/10.1007/s12633-022-02097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02097-5

Keywords

Navigation