Skip to main content

Advertisement

Log in

Relationship between Silicon through Potassium Silicate and Salinity Tolerance in Bellis perennis L

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Salt stress is considered as one of the critical factors threatening the growth and development of plants worldwide. The present study was aimed to evaluate the effect of potassium silicate (K2SiO3) on some physio-chemical characteristics of daisies under different levels of salinity stress. For this purpose, daisies (Bellis perennis ʻRob Royʼ) plants were treated with K2SiO3 (0, 2, and 4 Mm) and grown under salt stress (0, 30 and 60 mM NaCl). The results showed that salt stress stimulated mineral uptake, while application of 4 mM K2SiO3 reduced leaf Na+ and Cl content (54 and 164%) at 60 mM salinity compared to unsprayed plants. Leaf osmotic potential was more negative in 60 mM salinity treatment than in the other treatments. Increasing salt stress level reduced the photosynthetic parameters (chlorophyll, A, E, gs, and WUE) in leaves, while K2SiO3 treatment improved the parameters. Application of 4 mM K2SiO3 increased plant’s tolerance to stress by increasing carbohydrate, proline, phenolics and flavonoids. Application of K2SiO3 reduced malondialdehyde levels at 30 and 60 mM salt stress by 23.4 and 23%, respectively, by increasing membrane stability. However, application of K2SiO3 significantly increased the ability of plants to withstand salt stress by enhancing the accumulation of silicon (Si) and potassium (K) in plants compared to the unsprayed plants, which was due to the significant exclusion of Na+. The activity of peroxidase, ascorbate peroxidase, catalase, and superoxide dismutase exhibited positive increase as a result of K2SiO3 application under salt stress. In general, our results indicated that use of K2SiO3 can be considered as a common strategy to maintain the growth of plants under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Mitich LW (1997) English daisy (Bellis perennis L.). Weed Technol 11:626–628

    Article  Google Scholar 

  2. Lim TK (2014) Bellis perennis. Edible medicinal and non-medicinal plants. Springer, Dordrecht, pp 204–212

    Chapter  Google Scholar 

  3. Daneshi A, Brouwer R, Najafinejad A, Panahi M, Zarandian A, Maghsood FF (2021) Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J Hydrol 593:125621

    Article  Google Scholar 

  4. Savé R (2009) What is stress and how to deal with it in ornamental plants. Acta Hortic 813:241–254

    Article  Google Scholar 

  5. Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Hortic 3(2):30

    Article  Google Scholar 

  6. Zehtabian G, Khosravi H, Ghodsi M (2010) High demand in a land of water scarcity: Iran. Water and sustainability in arid regions. Springer, Dordrecht, pp 75–86

    Chapter  Google Scholar 

  7. Abdelhak M (2022) Soil improvement in arid and semiarid regions for sustainable development. Natural resources conservation and advances for sustainability. Elsevier, pp 73–90

    Chapter  Google Scholar 

  8. Nagarajan S, Varatharajan N, Gandhimeyyan RV (2022) Understanding the responses, mechanism and development of salinity stress tolerant cultivars in rice. Integrative advances in rice research. IntechOpen

    Google Scholar 

  9. Mahmoud AWM, Samy MM, Sany H, Eid RR, Rashad HM, Abdeldaym EA (2022) Nanopotassium, nanosilicon, and biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 14:723

    Article  CAS  Google Scholar 

  10. Hafez EM, Osman HS, El-Razek UAA, Elbagory M, Omara AED, Eid MA, Gowayed SM (2021) Foliar-applied potassium silicate coupled with plant growth-promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt-affected soil. Plants 10:894

    Article  CAS  Google Scholar 

  11. Verma KK, Song XP, Tian DD, Guo DJ, Chen ZL, Zhong CS, Nikpay A, Singh M, Rajput VD, Singh RK, Minkina T, Li YR (2021) Influence of silicon on biocontrol strategies to manage biotic stress for crop protection, performance, and improvement. Plants 10:2163

    Article  CAS  Google Scholar 

  12. Souri Z, Khanna K, Karimi N, Ahmad P (2021) Silicon and plants: current knowledge and future prospects. J Plant Growth Regul 40:906–925

    Article  CAS  Google Scholar 

  13. Etesami H, Adl SM (2020) Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15:100229

    Article  Google Scholar 

  14. Zhang J, Ding J, Ibrahim M, Jiao X, Song X, Bai P, Li J (2021) Effects of the interaction between vapor-pressure deficit and potassium on the photosynthesis system of tomato seedlings under low temperature. Sci Hortic 283:110089

    Article  CAS  Google Scholar 

  15. Ahmad W, Ayyub CM, Shehzad MA, Ziaf K, Ijaz M, Sher A, Abbas T, Shafi J (2019) Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Hortic Environ Biotechnol 60:853–869

    Article  CAS  Google Scholar 

  16. Felisberto G, de Mello PR, de Oliveira RLL, de Carvalho Felisberto PA (2021) Are nanosilica, potassium silicate and new soluble sources of silicon effective for silicon foliar application to soybean and rice plants? Silicon 13:3217–3228

    Article  CAS  Google Scholar 

  17. Vijayan A, Sriramachandrasekharan MV, Manivannan R, Shakila A (2021) Effect of silicon through potassium silicate on yield, nutrient uptake and quality of grand naine banana. Asian J Agric Food Sci 9(3)

  18. Asgari F, Diyanat M (2021) Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. J Plant Nutr 44:536–549

    Article  CAS  Google Scholar 

  19. Baddour AG (2021) Treating Rice plants with zeolite soil addition and foliar application of potassium silicate to mitigate the expected water scarcity in North Nile Delta, Egypt. J Soil Sci Agric Eng 12:33–38

    Google Scholar 

  20. Zhang LJ, Cisse EHM, Pu YJ, Miao LF, Xiang LS, Xu W, Yang F (2021) Potassium silicate combined with glycine betaine improved salt tolerance in Dalbergia odorifera. Biol Plant 65:323–332

    Article  CAS  Google Scholar 

  21. Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S (2021) Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiol Biochem 169:291–310

    Article  CAS  Google Scholar 

  22. Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Expt Sta Circ 347:1–39

    Google Scholar 

  23. Lopez-Zaplana A, Martinez-Garcia N, Carvajal M, Bárzana G (2022) Relationships between aquaporins gene expression and nutrient concentrations in melon plants (Cucumis melo L.) during typical abiotic stresses. Environ Exp Bot 195:104759

    Article  CAS  Google Scholar 

  24. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  Google Scholar 

  25. Sato S, Sakaguchi S, Furukawa H, Ikeda H (2006) Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (lycopersicon esculentum mill.). Sci Hortic 109:248–253

    Article  CAS  Google Scholar 

  26. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  27. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline forwater-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  28. Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  Google Scholar 

  29. Dewanto V, Xianzhong W, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  30. Zhishen J, Mengcheng T (1999) Jianming W (1999) the determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

  31. Sukwattanasinit T, Burana-Osot J, Sotanaphun U (2007) Spectrophotometric method for quantitative determination of total anthocyanins and quality characteristics of roselle (Hibiscus sabdariffa). Planta Med 73:1517–1522

    Article  CAS  Google Scholar 

  32. Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  CAS  Google Scholar 

  33. Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  CAS  Google Scholar 

  34. Sairam RK, Ra KV, Srivastava GC (2002) Differential response of wheatgenotypes to long term salinity stress in relation to oxidative stress,antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  35. Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to droughtstress in ten cultivars of oil seed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

    Article  CAS  Google Scholar 

  36. Srinivas ND, Rashmi KR, Raghavarao KSMS (1999) Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochem 35:43–48

    Article  CAS  Google Scholar 

  37. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specificperoxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  38. Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 27:315–323

    Article  Google Scholar 

  39. Lang DY, Fei PX, Cao GY, Jia XX, Li YT, Zhang XH (2019) Silicon promotes seedling growth and alters endogenous IAA, GA3 and ABA concentrations in Glycyrrhiza uralensis under 100 mM NaCl stress. J Hortic Sci Biotechnol 94(1):87–93

    Article  CAS  Google Scholar 

  40. Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2008) Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. J Plant Nutr 31:1999–2017

    Article  CAS  Google Scholar 

  41. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  Google Scholar 

  42. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  43. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100(7):1383–1389

    Article  CAS  Google Scholar 

  44. Yan GC, Nikolic M, Ye MJ, Xiao ZX, Liang YC (2018) Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric 17(10):2138–2150

    Article  CAS  Google Scholar 

  45. Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13:64–72

    Article  CAS  Google Scholar 

  46. Rehman S, Abbas G, Shahid M, Saqib M, Farooq ABU, Hussain M, Murtaza B, Amjad M, Asif Naeem M, Farooq A (2019) Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: implications for phytoremediation. Ecotoxicol Environ Saf 171:146–153

    Article  CAS  Google Scholar 

  47. Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  Google Scholar 

  48. Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  Google Scholar 

  49. Zhu YX, Gong HJ, Yin JL (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8:147

    Article  CAS  Google Scholar 

  50. Yan G, Fan X, Zheng W, Gao Z, Yin C, Li T, Liang Y (2021) Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J Plant Physiol 258:153379

    Article  Google Scholar 

  51. Adabnejad H, Kavousi HR, Hamidi H, Tavassolian I (2015) Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses. Mol Biol Res Commun 4:133

    CAS  Google Scholar 

  52. Hajlaoui H, Ayeb N, El Garrec JP, Denden M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crops Prod 31:122–130

    Article  CAS  Google Scholar 

  53. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472

    Article  CAS  Google Scholar 

  54. Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8(4):e62085

    Article  CAS  Google Scholar 

  55. Liang G, Liu J, Zhang J, Guo J (2020) Effects of drought stress on photosynthetic and physiological parameters of tomato. J Am Soc Hortic Sci 145(1):12–17

    Article  CAS  Google Scholar 

  56. Zhu Y, Jiang X, Zhang J, He Y, Zhu X, Zhou X, Gong H, Yin J, Liu Y (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209–220

    Article  CAS  Google Scholar 

  57. Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    Article  CAS  Google Scholar 

  58. Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM (2022) Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Front Plant Sci 13:819658

    Article  Google Scholar 

  59. Al-Huqail AA, Alqarawi AA, Hashem A, Malik JA, Abd_Allah EF (2019) Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J Biol Sci 26(7):1856–1864

  60. Mahdieh M, Habibollahi N, Amirjani MR, Abnosi MH, Ghorbanpour M (2015) Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. J Soil Sci Plant Nutr 15(4):1050–1060

    CAS  Google Scholar 

  61. Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164(2):151–162

    Article  CAS  Google Scholar 

  62. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  CAS  Google Scholar 

  63. Hnilickova H, Kraus K, Vachova P, Hnilicka F (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 10(5):845

    Article  CAS  Google Scholar 

  64. Khan A, Bilal S, Khan AL, Imran M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2020) Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicol Environ Saf 188:109885

    Article  CAS  Google Scholar 

  65. Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):1–13

    Article  Google Scholar 

  66. Tuladhar P, Sasidharan S, Saudagar P (2021) Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Biocontrol agents and secondary metabolites. Woodhead Publishing, pp 419–441

    Chapter  Google Scholar 

  67. Yaghubi K, Vafaee Y, Ghaderi N, Javadi T (2019) Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Commun Soil Sci Plant Anal 50(12):1439–1451

    Article  CAS  Google Scholar 

  68. Abdel Latef AA, Tran LS (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    Article  Google Scholar 

  69. Dar FA, Tahir I, Hakeem KR, Rehman RU (2022) Silicon application enhances the photosynthetic pigments and Pphenolic/flavonoid ocntent by modulating the phenylpropanoid pathway in common buckwheat under aluminium stress. Silicon 14:323–334

    Article  CAS  Google Scholar 

  70. Yaghubi K, Ghaderi N, Vafaee Y, Javadi T (2016) Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci Hortic 213:87–95

    Article  CAS  Google Scholar 

  71. Perin EC, Da Silva MR, Borowski JM, Crisel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2018) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526

    Article  Google Scholar 

  72. Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014) Reactive oxygen species (ROS) generation and detoxifying in plants. J Plant Nutr 37:1573–1585

    Article  CAS  Google Scholar 

  73. Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L). J Plant Physiol 160:1157–1164

    Article  CAS  Google Scholar 

  74. Soleimannejad Z, Abdolzadeh A, Sadeghipour HR (2019) Beneficial effects of silicon application in alleviating salinity stress in halophytic puccinellia distans plants. Silicon 11:1001–1010

    Article  CAS  Google Scholar 

  75. Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    Article  CAS  Google Scholar 

  76. Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxid 9(8):681

    Article  CAS  Google Scholar 

  77. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167(3):527–533

    Article  CAS  Google Scholar 

  78. Farouk S, Elhindi KM, Alotaibi MA (2020) Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf 206:111396

    Article  CAS  Google Scholar 

  79. Ibrahim MF, El-Samad A, Ashour H, El-Sawy AM, Hikal M, Elkelish A, El-Gawad HA, El-Yazied AA, Hozzein WN, Farag R (2020) Regulation of agronomic traits, nutrient uptake, osmolytes and antioxidants of maize as influenced by exogenous potassium silicate under deficit irrigation and semiarid conditions. Agronomy 10:1212

    Article  CAS  Google Scholar 

  80. Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    Article  CAS  Google Scholar 

  81. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  82. Hossain MT, Mori R, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2002) Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J Plant Res 115(1):0023–0027

    Article  CAS  Google Scholar 

  83. Rani S, Sharma MK, Kumar N (2019) Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr Sci 116(8)

  84. Al Murad M, Khan AL, Muneer S (2020) Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. Plants 9:460

    Article  Google Scholar 

  85. Ghaderi N (2019) Iron nanoparticles and potassium silicate interaction effect on salt-stressed grape cuttings under in vitro conditions: a morphophysiological and biochemical evaluation. In Vitro Cell Dev Biol Plant 55:510–518

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Toktam Oraee and Ferdowsi Universty for encouragement and facilities.

Author information

Authors and Affiliations

Authors

Contributions

A. Oraee: Performed the data acquisition, Writing - review & editing. A. Tehranifar: Project administration, Supervision and scientifically supported.

Corresponding author

Correspondence to Ali Tehranifar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oraee, A., Tehranifar, A. Relationship between Silicon through Potassium Silicate and Salinity Tolerance in Bellis perennis L. Silicon 15, 93–107 (2023). https://doi.org/10.1007/s12633-022-01988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01988-x

Keywords

Navigation