Skip to main content

Advertisement

Log in

Biologically Sensitive FETs: Holistic Design Considerations from Simulation, Modeling and Fabrication Perspectives

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The conceptualization of biomolecule sensing accomplished by field effect transistor (FET) devices have been attracting substantial contemplation for over twenty years owing to the prospectus for ultra-high sensitivity sensing, labeling free operation, cost efficacious and possibility of miniaturization. To promote deeper backgrounds and future outlooks of biologically sensitive-FETs (BioFETs), we systematically present the extensive review of the related basic principles and technicalities from design, simulation , modeling and fabrication perspectives. The primal significance of sensing ions and molecules for point of care (POC) diagnostics has impelled the seek for ultra sensitive, specific, and robust sensors. Electronic detection exhibits the potential for miniaturized on-chip applications applications that have the possibility of being integrated into classical electronic manufacturing processes and technology. An in depth exploration of major sensing mechanisms and types of BioFETs such as ion sensitive field-effect transistor (ISFET), silicon nanowire (SiNW), organic FET (OFET), graphene FET, and compound semiconductor material based FET are discussed in this review article. BioFETs deliver sensing system that are miniaturized intrinsically suited for multiplexed and parallel detections applications. Herein we also provide the effect on figure of merits of biosensing systems from architectural perspectives of BioFETs. The underlying detection rationale governing every potentiometric sensor is also discussed in detail. Despite of the commercial application of BioFETs in pH sensing has been realized, yet their application for bio-molecular sensing at a commercial scale is obstructed by poor comprehension of how to optimize device design for enhanced figure of merits. In part, these hindrances root from the superior inter-disciplinary nature of the problem experienced in this field, where knowledge of bio-molecular binding kinetics, surface chemistry and electrical engineering is required at large. This article is an attempt to contemplate different aspects of BioFET design from various perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There are no linked research data sets for this submission.

Abbreviations

\(\mathrm {pK}^{\prime }_{\mathrm {a, T}}\) :

Modified/practical \(\mathrm {pK}_{\mathrm {a}}\)

pH:

Potential of hydrogen

\(\xi _{\mathrm {a}}\) :

Charge on the conjugate acid species

A(T):

Temperature dependent constant

\(\lambda _{\mathrm {D}}\) :

Debye length

SNR:

Signal to noise ratio

\(\Delta \mathrm {V}_{\mathrm {T}}\) :

Change in threshold voltage

\(\mathrm {pH}_{\mathrm {PZC}}\) :

Point of zero charge

\(\beta\) :

Material constant for oxides

\(\mathrm {V}_{\mathrm {T}}\) :

Thermal equivalent of Voltage

\(\phi\) :

Potential at oxide-electrolyte interface

\(\mathrm {K}_{\mathrm {w}}\) :

Dissociation constant of water

\(k_{B}\) :

Boltzmann’s constant

\(\varepsilon _{0}\) :

Permittivity in vacuum

\(\mathrm {M}_{\mathrm {Eff}}\) :

Effective ion concentration of electrolyte

K:

Dielectric Permittivity

\(\mathrm {S}_{\mathrm {I}_{\mathrm {Ds}}}\) :

Drain Current Sensitivity

\(\mathrm {C}_{\mathrm {eff,g}}\) :

Effective Gate Capacitance

\(\mathrm {V}_{\mathrm {FB}}\) :

Flat-band Voltage

\(\mathrm {V}_{\mathrm {T}}\) :

Thermal Equivalent of Voltage

\(\beta\) :

Material Parameter for Oxides

References

  1. Dwivedi S, Purohit P, Misra R, Pareek P, Goel A, Khattri S, Pant KK, Misra S, Sharma P (2017) Indian J Clin Biochem 32(4):374. https://doi.org/10.1007/s12291-017-0688-8

  2. Yoon J, Shin M, Lee T, Choi JW (2020) Materials 13(2):299. https://doi.org/10.3390/ma13020299

  3. Naresh V, Lee N (2021) Sensors 21(4):1109. https://doi.org/10.3390/s21041109

  4. Papamatthaiou S, Estrela P, Moschou D (2021) Sci Rep 11(1). https://doi.org/10.1038/s41598-021-89367-1

  5. Nicoliche CYN, Oliveira ON, Lima RS (2020) In: Handbook on miniaturization in analytical chemistry. Elsevier, pp 185–219. https://doi.org/10.1016/b978-0-12-819763-9.00009-x

  6. Soleymani L, Li F (2017) ACS Sensors 2(4):458. https://doi.org/10.1021/acssensors.7b00069

  7. Kawamura A, Miyata T (2016) In: Biomaterials nanoarchitectonics. Elsevier, pp 157–176. https://doi.org/10.1016/b978-0-323-37127-8.00010-8

  8. Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E (2020) TrAC Trends Anal Chem 133:116067. https://doi.org/10.1016/j.trac.2020.116067

  9. Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) J Mater Chem C 3(25):6445. https://doi.org/10.1039/c5tc00755k

  10. Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC (2018) Chem Rev 118(22):11118. https://doi.org/10.1021/acs.chemrev.7b00660

  11. Shafi N, Parmaar JS, Sahu C, Periasamy C (2019) In: 2019 IEEE conference on modeling of systems circuits and devices (MOS-AK India). IEEE. https://doi.org/10.1109/mos-ak.2019.8902423

  12. Metkar SK, Girigoswami K (2019) Biocatalysis Agric Biotechnol 17:271. https://doi.org/10.1016/j.bcab.2018.11.029

  13. Kaisti M (2017) Biosens Bioelectron 98:437. https://doi.org/10.1016/j.bios.2017.07.010

  14. Syu YC, Hsu WE, Lin CT (2018) ECS J Solid State Sci Technol 7(7):Q3196. https://doi.org/10.1149/2.0291807jss

  15. Bhalla N, Pan Y, Yang Z, Payam AF (2020) ACS Nano 14(7):7783. https://doi.org/10.1021/acsnano.0c04421

  16. Béraud A, Sauvage M, Bazán CM, Tie M, Bencherif A, Bouilly D (2021) Analyst 146(2):403. https://doi.org/10.1039/d0an01661f

  17. Hwang MT, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, Faramarzi V, Jing Y, Park I, van der Zande AM, Nam S, Aluru NR, Bashir R (2020) Nat Commun 11(1). https://doi.org/10.1038/s41467-020-15330-9

  18. Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ (2020) Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.598103

  19. Deen MJ, Shinwari MW, Ranuárez JC, Landheer D (2006) J Appl Phys 100(7):074703. https://doi.org/10.1063/1.2355542

  20. Rollo S, Rani D, Olthuis W, García CP (2019) Biophys Rev 11(5):757. https://doi.org/10.1007/s12551-019-00592-5

  21. Gao A, Lu N, Wang Y, Li T (2016) Sci Rep 6(1). https://doi.org/10.1038/srep22554

  22. Lee HJ, Yook JG (2014) Biosens Bioelectron 61:448. https://doi.org/10.1016/j.bios.2014.05.025

  23. Wrege R, Schneider MC, Guimaraes JG, Galup-Montoro C (2019) In: 2019 IEEE 10th latin american symposium on circuits & Systems (LASCAS). IEEE. https://doi.org/10.1109/lascas.2019.8667572

  24. Shafi N, Bhat AM, Parmar JS, Sahu C, Periasamy C (2021) IEEE Trans Nanotechnol 20:534. https://doi.org/10.1109/tnano.2021.3089717

  25. Schöning MJ, Poghossian A (2002) Analyst 127(9):1137. https://doi.org/10.1039/b204444g

  26. Lowe BM, Sun K, Zeimpekis I, Skylaris CK, Green NG (2017) Analyst 142(22):4173. https://doi.org/10.1039/c7an00455a

  27. Landheer D, McKinnon WR, Aers G, Jiang W, Deen MJ, Shinwari MW (2007) IEEE Sensors J 7(9):1233. https://doi.org/10.1109/jsen.2007.901047

  28. Bergveld P (1986) Biosensors 2(1):15. https://doi.org/10.1016/0265-928x(86)85010-6

  29. Ambhorkar P, Wang Z, Ko H, Lee S, in Koo K, Kim K, Il Cho D (2018) Micromachines 9(12):679. https://doi.org/10.3390/mi9120679

  30. Shafi N, Sahu C, Periasamy C (2019) IEEE Electron Device Lett 40(6):997. https://doi.org/10.1109/LED.2019.2911334

  31. Tabata M, Miyahara Y (2019) J Photopolym Sci Technol 32(1):97. https://doi.org/10.2494/photopolymer.32.97

  32. Rajan NK, Duan X, Vacic A, Routenberg DA, Reed MA (2012) In: 70th device research conference. IEEE. https://doi.org/10.1109/drc.2012.6256954

  33. Bergveld P (2003) Sensors Actuators B Chem 88(1):1. https://doi.org/10.1016/s0925-4005(02)00301-5

  34. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, JR. Nobile, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) Nature 475(7356):348. https://doi.org/10.1038/nature10242

  35. Mahdavi M, Samaeian A, Hajmirzaheydarali M, Shahmohammadi M, Mohajerzadeh S, Malboobi MA (2014) RSC Adv 4(69):36854. https://doi.org/10.1039/c4ra07433e

  36. Park KY, Choi SB, Lee M, Sohn BK, Choi SY (2002) Sensors Actuators B Chem 83(1):90. https://doi.org/10.1016/S0925-4005(01)01049-8. Selected Papers from TRANSDUCERS ‘01 EUROSENSORS XV

  37. Poghossian A, Schöning M, Schroth P, Simonis A, Lüth H (2001) Sensors and Actuators B Chem 76(1):519. Proceeding of the Eighth International Meeting on Chemical Sensors IMCS-8 - Part 1. https://doi.org/10.1016/S0925-4005(01)00609-8

  38. Caras S, Janata J (1980) Anal Chem 52(12):1935. https://doi.org/10.1021/ac50062a035

  39. Soldatkin A, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N (2003) Biosens Bioelectron 19(2):131. https://doi.org/10.1016/s0956-5663(03)00175-1

  40. Cui Y (2001) Science 293(5533):1289. https://doi.org/10.1126/science.1062711

  41. Buitrago E, Fagas G, Badia MFB, Georgiev YM, Berthomé M, Ionescu AM (2013) Sensors Actuators B Chem 183:1. https://doi.org/10.1016/j.snb.2013.03.028

  42. Rigante S, Ionescu AM (2017) Method to fabricate finfet sensors, in particular, finfet sensors for ionic, chemical and biological applications on si-bulk. US Patent 9,570,288

  43. Balasubramanian K (2010) Biosens Bioelectron 26(4):1195. https://doi.org/10.1016/j.bios.2010.07.041

  44. Toumazou C, Shepherd LM, Reed SC, Chen GI, Patel A, Garner DM, Wang CJA, Ou CP, Amin-Desai K, Athanasiou P, Bai H, Brizido IMQ, Caldwell B, Coomber-Alford D, Georgiou P, Jordan KS, Joyce JC, Mura ML, Morley D, Sathyavruthan S, Temelso S, Thomas RE, Zhang L (2013) Nat Methods 10(7):641. https://doi.org/10.1038/nmeth.2520

  45. Miscourides N, Georgiou P (2015) IEEE Sensors J 15(4):2219. https://doi.org/10.1109/JSEN.2014.2372851

  46. Kim CH, Ahn JH, Lee KB, Jung C, Park HG, Choi YK (2012) IEEE Trans Electron Devices 59(10):2825. https://doi.org/10.1109/TED.2012.2209650

  47. Shafi N, Sahu C, Periasamy C (2020) IEEE Sensors Journal 20(9):4749. https://doi.org/10.1109/JSEN.2020.2964625

  48. Kaisti M, Boeva Z, Koskinen J, Nieminen S, Bobacka J, Levon K (2016) ACS Sensors 1(12):1423. https://doi.org/10.1021/acssensors.6b00520

  49. Jang HJ, Cho WJ (2014) Sci Rep 4(1).https://doi.org/10.1038/srep05284

  50. Huang YJ, Lin CC, Huang JC, Hsieh CH, Wen CH, Chen TT, Jeng LS, Yang CK, Yang JH, Tsui F, Liu YS, Liu S, Chen M (2015) In: 2015 IEEE international electron devices meeting (IEDM). IEEE https://doi.org/10.1109/iedm.2015.7409792

  51. Jadoon S, Karim S, Akram MR, Khan AK, Zia MA, Siddiqi AR, Murtaza G (2015) Int J Anal Chem 2015:1. https://doi.org/10.1155/2015/164974

  52. Sato K, Kang W, Saga K, Sato K (1989) J Am Acad Dermatol 20(4):537. https://doi.org/10.1016/s0190-9622(89)70063-3

  53. Caplan YH, Goldberger BA (2001) J Anal Toxicol 25(5):396. https://doi.org/10.1093/jat/25.5.396

  54. Ayers P, Warrington L (2008) Nutr Clin Pract 23(2):122. https://doi.org/10.1177/0884533608314534

  55. Ghoneim MT, Nguyen A, Dereje N, Huang J, Moore GC, Murzynowski PJ, Dagdeviren C (2019) Chem Rev 119(8):5248. https://doi.org/10.1021/acs.chemrev.8b00655

  56. Vannucci RC (2003) In: Fetal and neonatal brain injury. Cambridge University Press, pp 593–611. https://doi.org/10.1017/cbo9780511544774.032

  57. Kellum JA (2000) Crit Care 4(1):6. https://doi.org/10.1186/cc644

  58. Nair PR, Alam MA (2010) J Appl Phys 107(6):064701. https://doi.org/10.1063/1.3310531

  59. Zhou HX, Pang X (2018) Chem Rev 118(4):1691. https://doi.org/10.1021/acs.chemrev.7b00305

  60. Chen V (2019) Sensors 19(19):4214. https://doi.org/10.3390/s19194214

  61. Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q (2017) Acta Pharmacol Sin 38(6):798. https://doi.org/10.1038/aps.2017.33

  62. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Sensors 8(3):1400. https://doi.org/10.3390/s80314000

  63. Myny K (2018) Nat Electron 1(1):30. https://doi.org/10.1038/s41928-017-0008-6

  64. Zhao J, Wu L, Zhi J (2008) J Mater Chem 18(21):2459. https://doi.org/10.1039/b800029h

  65. Ishteyaq I, Muzaffar K (2020) Superlattice Microst 145:106604. https://doi.org/10.1016/j.spmi.2020.106604

  66. Dorfman A, Kumar N (2006) Langmuir JIH 22(11):4890. https://doi.org/10.1021/la053270+

  67. Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP (2012) Anal Chim Acta 737:1. https://doi.org/10.1016/j.aca.2012.05.048

  68. Sung D, Koo J (2021) Biomed Eng Lett 11(2):85. https://doi.org/10.1007/s13534-021-00187-8

  69. Parmar JS, Sahu C (2021) IEEE Trans Device Mater Reliab 21(1):2. https://doi.org/10.1109/tdmr.2020.3041190

  70. Mikolajick T, Heinzig A, Trommer J, Pregl S, Grube M, Cuniberti G, Weber WM (2013) Phys Status Solidi (RRL) - Rapid Res Lett 7(10):793. https://doi.org/10.1002/pssr.201307247

  71. Sharma N, Mishra S, Singh K, Chaturvedi N, Chauhan A, Periasamy C, Kharbanda DK, Parjapat P, Khanna PK, Chaturvedi N (2020) IEEE Trans Electron Devices 67(1):289. https://doi.org/10.1109/TED.2019.2949821

  72. Sharma N, Periasamy C, Chaturvedi N (2018) J Nanosci Nanotechnol 18(7):4580. https://doi.org/10.1166/jnn.2018.15350

  73. Bhat AM, Shafi N, Sahu C, Periasamy C (2021) IEEE Sensors J:1–1. https://doi.org/10.1109/JSEN.2021.3100475

  74. Varghese A, Periasamy C, Bhargava L (2019) IEEE Trans Nanotechnol 18:747. https://doi.org/10.1109/TNANO.2019.2928308

  75. Zio E (2013) The monte carlo simulation method for system reliability and risk analysis. Springer, London. https://doi.org/10.1007/978-1-4471-4588-2

  76. Sarkar D, Banerjee K (2012) Applied Physics Letters 100(14):143108. https://doi.org/10.1063/1.3698093

  77. Shafi N, Sahu C, Periasamy C (2018) Superlattice Microst 120:75. https://doi.org/10.1016/j.spmi.2018.05.006

  78. Dewan B, Chaudhary S, Yadav M (2021). Silicon. https://doi.org/10.1007/s12633-021-00969-w

  79. Sarkar D, Krall M, Banerjee K (2010) Appl Phys Lett 97(26):263109. https://doi.org/10.1063/1.3528338

  80. Knoch J, Mantl S, Appenzeller J (2007) Solid-State Electron 51(4):572. https://doi.org/10.1016/j.sse.2007.02.001

  81. Narang R, Saxena M, Gupta M (2017) Analytical model of ph sensing characteristics of junctionless silicon on insulator isfet. IEEE Transactions on Electron Devices 64:(4):1742–41750.https://doi.org/10.1109/TED.2017.2668520

  82. Dinar AM, Zain AM, Salehuddin F, Attiah ML, Abdulhameed M, Mohsen MK (2019) IOP Conf Ser Mater Sci Eng 518(4):042020. https://doi.org/10.1088/1757-899x/518/4/042020

  83. Yesayan A, Jazaeri F, Sallese JM (2020) IEEE Trans Electron Devices 67(3):1157. https://doi.org/10.1109/ted.2020.2965167

  84. Saha P, Sarkar SK (2020) IEEE Sensors Lett 4(7):1. https://doi.org/10.1109/lsens.2020.2999207

  85. Grour TE, Pasadas F, Medina-Rull A, Najari M, Marin EG, Toral-Lopez A, Ruiz FG, Godoy A, Jimenez D, Mir LE (2021) IEEE Trans Electron Devices :1–4. https://doi.org/10.1109/ted.2021.3112407

  86. Sinha S, Pal T, Sharma P, Kharbanda D, Khanna PK, Tanwar A, Sharma R, Mukhiya R (2021) J Electron Mater 50(12):7085. https://doi.org/10.1007/s11664-021-09220-z

  87. Sinha S, Mukhiya R, Sharma R, Khanna PK, Khanna VK (2019) J Mater Sci Mater Electron 30(7):7163. https://doi.org/10.1007/s10854-019-01033-5

  88. Chou JC, Chen CW (2009) IEEE Sensors J 9(3):277. https://doi.org/10.1109/jsen.2008.2012221

  89. Kim S, Rim T, Kim K, Lee U, Baek E, Lee H, Baek CK, Meyyappan M, Deen MJ, Lee JS (2011) Analyst 136(23):5012. https://doi.org/10.1039/c1an15568g

  90. Hashim U, Chong SW, Liu WW (2013) J Nanomater 2013:1. https://doi.org/10.1155/2013/542737

  91. Salaün AC, Pichon L, Wenga G (2014) Procedia Eng 87:911. https://doi.org/10.1016/j.proeng.2014.11.303

  92. Chen MC, Chen HY, Lin CY, Chien CH, Hsieh TF, Horng JT, Qiu JT, Huang CC, Ho CH, Yang FL (2012) Sensors 12(4):3952. https://doi.org/10.3390/s120403952

  93. Ahn JH, Kim JY, Seol ML, Baek DJ, Guo Z, Kim CH, Choi SJ, Choi YK (2013) Appl Phys Lett 102(8):083701. https://doi.org/10.1063/1.4793655

  94. Chen HY, Lin CY, Chen MC, Huang CC, Chien CH (2011) Japan J Appl Phys 50(4):04DL05. https://doi.org/10.1143/jjap.50.04dl05

  95. Dai P, Gao A, Lu N, Li T, Wang Y (2013) Japan J Appl Phys 52(12R):121301. https://doi.org/10.7567/jjap.52.121301

  96. Chiang PL, Chou TC, Wu TH, Li CC, Liao CD, Lin JY, Tsai MH, Tsai CC, Sun CJ, Wang CH, Fang JM, Chen YT (2012) Chem Asian J 7(9):2073. https://doi.org/10.1002/asia.201200222

  97. Lee KH, Lee JO, Choi S, Yoon JB, Cho GH (2012) Biosens Bioelectron 31(1):343. https://doi.org/10.1016/j.bios.2011.10.042

  98. Bao Z, Sun J, Zhao X, Li Z, Cui S, Meng Q, Zhang Y, Wang T, Jiang Y (2017) Int J Nanomedicine 12:4623. https://doi.org/10.2147/ijn.s135985

  99. Lu N, Gao A, Dai P, Song S, Fan C, Wang Y, Li T (2014) Small 10(10):2022. https://doi.org/10.1002/smll.201302990

  100. Arshad MKM, Adzhri R, Fathil MFM, Gopinath SCB, NMN M (2018) J Nanosci Nanotechnol 18(8):5283. https://doi.org/10.1166/jnn.2018.15419

  101. Yang H, Sakata T (2019) Sensors 19(15):3393. https://doi.org/10.3390/s19153393

  102. Nikkhoo N, Cumby N, Gulak PG, Maxwell KL (2016) PLoS ONE 11(9):e0162438. https://doi.org/10.1371/journal.pone.0162438

  103. Wenga G, Jacques E, Salaün AC, Rogel R, Pichon L, Geneste F (2013) Biosens Bioelectron 40(1):141. https://doi.org/10.1016/j.bios.2012.07.001

  104. Chen HC, Chen YT, Tsai RY, Chen MC, Chen SL, Xiao MC, Chen CL, Hua MY (2015) Biosens Bioelectron 66:198. https://doi.org/10.1016/j.bios.2014.11.019

  105. Ahmad R, Ahn MS, Hahn YB (2017) J Colloid Interface Sci 498:292. https://doi.org/10.1016/j.jcis.2017.03.069

  106. Gao N, Gao T, Yang X, Dai X, Zhou W, Zhang A, Lieber CM (2016) Proc Natl Acad Sci 113(51):14633. https://doi.org/10.1073/pnas.1625010114

  107. Gu B, Park TJ, Ahn JH, Huang XJ, Lee SY, Choi YK (2009) Small 5(21):2407. https://doi.org/10.1002/smll.200900450

  108. Kim CH, Ahn JH, Kim JY, Choi JM, Lim KC, Park TJ, Heo NS, Lee HG, Kim JW, Choi YK (2013) Biosens Bioelectron 41:322. https://doi.org/10.1016/j.bios.2012.08.047

  109. Santermans S, Barge D, Hellings G, Mori C, Migacz K, Rip J, Spampinato V, Vos R, Bois BD, Chaudhuri A, Martino J, Heyns M, Severi S, Van Roy W, Martens K (2020) In: 2020 IEEE international electron devices meeting (IEDM). pp 35.4.1–35.4.4. https://doi.org/10.1109/IEDM13553.2020.9371908

  110. Zhou J, Zhang L, Leng Y, Tsao HK, Sheng YJ, Jiang S (2006) J Chem Phys 125(10):104905. https://doi.org/10.1063/1.2337629

  111. Wu S, Anwar A (2000) In: Proceedings 2000 IEEE/ cornell conference on high performance devices (Cat. No.00CH37122). pp 123–127. https://doi.org/10.1109/CORNEL.2000.902527

  112. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235. https://doi.org/10.1093/nar/28.1.235

  113. Windbacher T, Sverdlov V, Selberherr S (2009) In: 2009 13th international workshop on computational electronics. pp 1–4. https://doi.org/10.1109/IWCE.2009.5091122

  114. Huckel E, Debye P (1923) Phys Z 24:185

  115. Mohri S, Shimizu J, Goda N, Miyasaka T, Fujita A, Nakamura M, Kajiya F (2006) Sensors Actuators B Chem 115(1):519. https://doi.org/10.1016/j.snb.2005.10.029

  116. Parmar JS, Shafi N, Sahu C (2020) Silicon 13(5):1391. https://doi.org/10.1007/s12633-020-00526-x

  117. Jing-Juan X (2005) Front Biosc 10(1–3):420. https://doi.org/10.2741/1538

  118. Palán B, Santos F, Karam J, Courtois B, Husák M (1999) Sensors Actuators B Chem 57(1):63. https://doi.org/10.1016/S0925-4005(99)00136-7

  119. Harame D, Bousse L, Shott J, Meindl J (1987) IEEE Trans Electron Devices 34(8):1700. https://doi.org/10.1109/T-ED.1987.23140

  120. Yuqing M, Jianguo G, Jianrong C (2003) Biotechnol Adv 21(6):527. https://doi.org/10.1016/s0734-9750(03)00103-4

  121. Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP (2015) Nature Nanotechnol 10(9):791. https://doi.org/10.1038/nnano.2015.163

  122. Pachauri V, Kern K, Balasubramanian K (2013) Appl Phys Lett 102(2):023501. https://doi.org/10.1063/1.4775579

  123. Shafi N, Parmaar JS, Porwal A, Bhat AM, Sahu C, Periasamy C (2020) Silicon 13(7):2041. https://doi.org/10.1007/s12633-020-00583-2

Download references

Acknowledgements

The authors would like to thank Malaviya National Institute of Technology Jaipur for providing all necessary requirements for completion of this work.

Funding

The authors have not received any funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The main conception of this work is brainchild of N. Shafi (Author 1). All other authors complied/tabulated the information and helped in writing different parts of the manuscript. C. Sahu and C. Periasamy supervised the entire work, made suitable conclusions from the literature survey and made important discussions required for modifications to the final manuscript.

Corresponding author

Correspondence to Nawaz Shafi.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for participation

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, N., Bhat, A.M., Parmar, J.S. et al. Biologically Sensitive FETs: Holistic Design Considerations from Simulation, Modeling and Fabrication Perspectives. Silicon 14, 9237–9261 (2022). https://doi.org/10.1007/s12633-022-01709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01709-4

Keywords

Navigation