Skip to main content
Log in

Influence of Nano Silica on Fresh and Hardened Properties of Cement-based Materials – A Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In field, the research has been extended to the usage of Nano material in concrete and thereby enhancing the performance of the structure. It has been identified that incorporating a trifling amount of Nano material in concrete can modify the properties of cement at Nano level which makes the concrete much sustainable. Among the various Nano materials, Nano Silica has gained the attention in contemporary days because it offers high SSA and good pozzolanic reactivity even better than the other conventional mineral admixtures. Due to its high SSA, Nano Silica extended its advantages as a better filler, which makes the concrete less porous and thus enhances the durability. Early-age strength gain is due to the accelerated Nano Silica – Cement hydration which ends up in the formation of complex microstructural C-S–H gel. Accelerated hydration is the result of high pozzolanic reactivity of Nano Silica. For the better rheological properties, concrete with Nano Silica requires the higher dosage of super plasticizers to promote the rolling effect of Nano particles and also to avoid the agglomeration of Nano particles in concrete even at high water-cement ratio (0.45) when paralleled with conventional one. Moreover, dispersion type, particle size distribution and densification of concrete with Nano Silica particles plays a vital role in enhancing the strength parameters of the concrete. This review paper presents the study on how Nano Silica in concrete at different dosages can alter the properties of the concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The authors confirms that all the supporting data are available in manuscript.

Code Availability

Not applicable.

Abbreviations

OPC:

Ordinary Portland Cement

SCM:

Supplementary Cementitious Material

CNTs:

Carbon Nano Tubes

NS:

Nano Silica

SEM:

Scanning Electron Microscope

CO2 :

Carbon dioxide

C-S–H:

Calcium Silicate Hydrate

ITZ:

Interfacial Transition Zone

W/C:

Water-to-Cement

W/B:

Water-to-Binder

Ca/Si:

Calcium-Silica Ratio

nm:

Nano meter

µm:

Micro meter

rpm:

Revolution Per Minute

min:

Minutes

˚C:

Degree Celsius

SCC:

Self-Compacting Concrete

HPC:

High Performance Concrete

PCE:

Poly Carboxylate Ether

TOC:

Total Organic Carbon

mSiO2 :

Mesoporous Silica

TEOS:

Tetraethyl Orthosilicate

mSiO2/TiO2 :

Mesoporous titania-silica

SiO2 :

Silicon dioxide

Al2O3 :

Aluminum oxide

Fe2O3 :

Ferric Oxide

MgO:

Magnesium Oxide

CaO:

Calcium Oxide

SO3 :

Sulphur Trioxide

K2O:

Potassium oxide

Na2O:

Sodium oxide

TiO2 :

Titanium oxide

P2O5 :

Phosphorous pentoxide

SSA:

Specific Surface Area

SF:

Silica Fume

FA:

Fly Ash

UFFA:

Ultra-Fine Fly Ash

MK:

Metakaolin

NCW:

Nano Ceramic Waste

GP:

Glass Powder

GO:

Graphene Oxide

NC:

Dry Calcium Carbonate

GF:

Glass Fiber

HVFA:

High-Volume Fly Ash

HPSCC:

High Performance Self-Compacting Concrete

MPC:

Magnesium Phosphate Cement

GGBFS:

Ground Granulated Blast Furnace Slag

UHPC:

Ultra-high-Performance Concrete

RAC:

Recycled Aggregate Concrete

SCLC:

Self-Compacting Light Weight Aggregate

C3S:

Tricalcium Silicate

C2S:

Dicalcium Silicate

C3A:

Tricalcium Aluminate

Ca(OH)2 :

Calcium Hydroxide

PCA:

Poly Carboxylate Water-Reducing Admixture

HSC:

High Strength Concrete

PP:

Polypropylene

LWC:

Light Weight Concrete

LWA:

Light Weight Aggregate

HSLWC:

High strength lightweight concrete

ULWC:

Ultra-Light Weight Concrete

ULCC:

Ultra-Light weight Cement Composites

OWC:

Oil Well Cement

HVS:

High Volume Slag

HVS-FA:

High Volume Slag Fly Ash

BFS:

Blast Furnace Slag

Cement L:

Low C3A Cement

Cement H:

High C3A Cement

PCM:

Printable Cement Mortar

CAC:

Calcium Aluminate Cement

HVFAC:

High-Volume Fly Ash High-Strength Concrete

MP:

Macro polymeric Fibre

PVA:

Poly-Vinyl Alcohol

UPV:

Ultra-sonic pulse velocity

SEM:

Scanning Electron Microscopy

References

  1. Abhilash PP, Nayak DK, Sangoju B, Kumar R, Kumar V (2021) Effect of nano-silica in concrete; a review. Constr Build Mater. 278. Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2021.122347

  2. Mostafa SA, Deeb MMEL, Farghali AA, Faried AS (2021) Evaluation of the nano silica and nano waste materials on the corrosion protection of high strength steel embedded in ultra - high performance concrete. Sci Rep. https://doi.org/10.1038/s41598-021-82322-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sharma U, Singh LP, Zhan B, Sun C (2019) Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength. Cem Concr Compos 97(June 2018):312–321. https://doi.org/10.1016/j.cemconcomp.2019.01.007

    Article  CAS  Google Scholar 

  4. Ghafoori N, Batilov IB, Najimi M (2016) Sulfate Resistance of Nanosilica and Microsilica Contained Mortars. no. 113. https://doi.org/10.14359/51688989

  5. Li LG, Zheng JY, Ng PL, Zhu J, Kwan AKH (2019) Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. 223; 965–975. https://doi.org/10.1016/j.conbuildmat.2019.07.241

  6. Kooshafar M, Madani H (2020) An investigation on the influence of nano silica morphology on the characteristics of cement composites. J Build Eng. 30(September 2019):101293. https://doi.org/10.1016/j.jobe.2020.101293

    Article  Google Scholar 

  7. Chen H, Feng P, Du Y, Jiang J, Sun W (2018) The effect of superhydrophobic nano-silica particles on the transport and mechanical properties of hardened cement pastes. 182; 620–628. https://doi.org/10.1016/j.conbuildmat.2018.06.146

  8. Garg R, Garg R, Bansal M, Aggarwal Y (2020) Materials Today : Proceedings Experimental study on strength and microstructure of mortar in presence of micro and nano-silica. Mater Today Proc. no. xxxx. https://doi.org/10.1016/j.matpr.2020.06.167

  9. Andrade S, Henrique J, Cesar P, Neiry A, Lopes DM, Frías M (2019) Investigation of C-S-H in ternary cement pastes containing nanosilica and highly-reactive supplementary cementitious materials ( SCMs ): Microstructure and strength. Constr Build Mater 198:445–455. https://doi.org/10.1016/j.conbuildmat.2018.10.235

    Article  CAS  Google Scholar 

  10. Sargam Y and Wang K (2021) Influence of dispersants and dispersion on properties of nanosilica modified cement-based materials. 118 (September 2020)

  11. Jassam TM, Kien-woh K, Lau B, Yaseer MMM (2019) Novel cement curing technique by using controlled release of carbon dioxide coupled with nanosilica. Constr Build Mater 223:692–704. https://doi.org/10.1016/j.conbuildmat.2019.06.229

    Article  CAS  Google Scholar 

  12. Rupasinghe M, Nicolas RS, Mendis P, Sofi M, Ngo T (2017) Abstract. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2017.02.011

    Article  Google Scholar 

  13. Wang J et al (2020) Effect of nano-silica on chemical and volume shrinkage of cement-based composites. Constr Build Mater 247:118529. https://doi.org/10.1016/j.conbuildmat.2020.118529

    Article  CAS  Google Scholar 

  14. Osazuwa OU, Cheng CK (2020) Catalytic Conversion of Greenhouse Gases. Encycl Renew Sustain Mater. 336–345. https://doi.org/10.1016/b978-0-12-803581-8.11032-x

  15. Maduna L, Patnaik A. The Textile Institute Book Series – Waste Management in the Fashion and Textile Industries, chapter 6 – Management of Air Quality. Woodhead Publishing. pp. 131–141. https://doi.org/10.1016/B978-0-12-818758-6.00006-5

  16. Said AM, Zeidan MS, Bassuoni MT, Tian Y (2012) Properties of concrete incorporating nano-silica. Constr Build Mater 36:838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044

    Article  Google Scholar 

  17. Liu B, Qin J, Shi J, Jiang J, Wu X, He Z (2021) New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Constr Build Mater 272:121660

    Article  CAS  Google Scholar 

  18. Shi J, Tan J, Liu B, Chen J, Dai J, He Z (2021) Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates. J Hazard Mater 403(September 2020):123983

    Article  CAS  Google Scholar 

  19. Shi J et al (2021) A green ultra-lightweight chemically foamed concrete for building exterior: A feasibility study. J Clean Prod 288:125085. https://doi.org/10.1016/j.jclepro.2020.125085

    Article  CAS  Google Scholar 

  20. Praveenkumar S, Sankarasubramanian G (2021) Synergic Effect of Sugarcane Bagasse Ash Based Cement on High Performance Concrete Properties. SILICON 13(7):2357–2367. https://doi.org/10.1007/s12633-020-00832-4

    Article  CAS  Google Scholar 

  21. Nandhini K (2021) Influence of Industrial and Agricultural by-Products as Cementitious Blends in Self-Compacting Concrete – A Review

  22. Ajith G, Shanmugasundaram N, Praveenkumar S (2021) Effect of mineral admixtures and manufactured sand on compressive strength of engineered cementitious composite. J Build Rehabil 6:38. https://doi.org/10.1007/s41024-021-00137-y

    Article  Google Scholar 

  23. Ai-khalaf MN, Yousift HA (1984) Use of rice h u s k ash in concrete. 6(4): 241–248

  24. Atewi YR, Hasan MF, Güneyisi E (2019) Fracture and permeability properties of glass fiber reinforced self-compacting concrete with and without nanosilica. Constr Build Mater 226:993–1005. https://doi.org/10.1016/j.conbuildmat.2019.08.029

    Article  CAS  Google Scholar 

  25. Luo Z, Li W, Li P, Wang K, Shah SP (2021) Investigation on effect of nanosilica dispersion on the properties and microstructures of fly ash-based geopolymer composite. Constr Build Mater 282:122690. https://doi.org/10.1016/j.conbuildmat.2021.122690

    Article  CAS  Google Scholar 

  26. Nasution A, Imran I, Abdullah M (2015) Improvement of concrete durability by nanomaterials. Procedia Eng 125:608–612. https://doi.org/10.1016/j.proeng.2015.11.078

    Article  CAS  Google Scholar 

  27. Heikal M, El SA, Morsi WM (2013) Characteristics of blended cements containing nano-silica. HBRC J 9(3):243–255. https://doi.org/10.1016/j.hbrcj.2013.09.001

    Article  Google Scholar 

  28. Miguel J, Crucho L, Manuel J, Dias S (2019) Evaluation of the durability of asphalt concrete modified with nanomaterials using the TEAGE aging method. 214:178–186. https://doi.org/10.1016/j.conbuildmat.2019.04.121.

  29. Kumar S, Ali N, Begum S, Rahman Z (2020) Materials Today : Proceedings Characterization , properties and microstructure studies of cement mortar incorporating nano-SiO 2. Mater Today Proc. no. xxxx. https://doi.org/10.1016/j.matpr.2020.05.420

  30. Singh LP, Ali D, Tyagi I, Sharma U, Singh R, Hou P (2019) Durability studies of nano-engineered fly ash concrete. Constr Build Mater 194:205–215. https://doi.org/10.1016/j.conbuildmat.2018.11.022

    Article  CAS  Google Scholar 

  31. Kong D, Su Y, Du X, Yang Y, Wei S, Shah SP (2013) Construction and Buildi ng Materi als Influence of nano-silica agglomeration on fresh properties of cement pastes. Constr Build Mater 43:557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066

    Article  Google Scholar 

  32. Liu M, Zhou Z, Zhang X, Yang X, Cheng X (2016) The synergistic effect of nano-silica with blast furnace slag in cement based materials. Constr Build Mater 126:624–631. https://doi.org/10.1016/j.conbuildmat.2016.09.078

    Article  CAS  Google Scholar 

  33. Aggarwal P, Singh RP, Aggarwal Y (2015) Use of nano-silica in cement based materials - A review.Cogent Eng. 33(1). https://doi.org/10.1080/23311916.2015.1078018

  34. Yang H et al (2021) Effects of nano silica on the properties of cement-based materials : A comprehensive review. Constr Build Mater 282:122715. https://doi.org/10.1016/j.conbuildmat.2021.122715

    Article  CAS  Google Scholar 

  35. Quercia G, Brouwers HJH. Application of nano-silica (nS) in concrete mixtures

  36. M. Adamu et al. (2018) Effect of crumb rubber and nano silica on the fatigue performance of roller compacted concrete pavement Effect of crumb rubber and nano silica on the fatigue performance of roller compacted concrete pavement. Cogent Eng. 21 (1). https://doi.org/10.1080/23311916.2018.1436027

  37. Shanmugasundaram N, Praveenkumar S (2021) Influence of supplementary cementitious materials, curing conditions and mixing ratios on fresh and mechanical properties of engineered cementitious composites – A review. Constr Build Mater 309:125038. https://doi.org/10.1016/j.conbuildmat.2021.125038

    Article  CAS  Google Scholar 

  38. Rai S, Tiwari S (2018) ScienceDirect Nano Silica in Cement Hydration. Mater Today Proc 5(3):9196–9202. https://doi.org/10.1016/j.matpr.2017.10.044

    Article  CAS  Google Scholar 

  39. Feng P, Chang H, Liu X, Ye S, Shu X, Ran Q (2020) The significance of dispersion of nano-SiO 2 on early age hydration of cement pastes. Mater Des 186:108320. https://doi.org/10.1016/j.matdes.2019.108320

    Article  CAS  Google Scholar 

  40. Ghafoori N et al (2018) Effects of Blaine and Tricalcium Aluminate on the Sulfate Resistance of Nanosilica-Containing Mortars. 30 (2): pp. 1–13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002128.

  41. Huang Q, Zhu X, Zhao L, Zhao M, Liu Y, Zeng X (2020) Effect of nanosilica on sulfate resistance of cement mortar under partial immersion. Constr Build Mater 231:117180. https://doi.org/10.1016/j.conbuildmat.2019.117180

    Article  CAS  Google Scholar 

  42. Seifan M, Mendoza S, Berenjian A (2020) Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives. Constr Build Mater 252:119121. https://doi.org/10.1016/j.conbuildmat.2020.119121

    Article  CAS  Google Scholar 

  43. Yu J, Zhang M, Li G, Meng J, Leung CKY (2020) Using nano-silica to improve mechanical and fracture properties of fiber- reinforced high-volume fly ash cement mortar. Constr Build Mater 239:117853. https://doi.org/10.1016/j.conbuildmat.2019.117853

    Article  CAS  Google Scholar 

  44. Mei J et al (2018) Influence of steam curing and nano silica on hydration and microstructure characteristics of high volume fly ash cement system. Constr Build Mater 171:83–95. https://doi.org/10.1016/j.conbuildmat.2018.03.056

    Article  CAS  Google Scholar 

  45. Sikora P, Rucinska T, Stephan D, Chung S, Abd M (2020) Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Constr Build Mater 264:120241. https://doi.org/10.1016/j.conbuildmat.2020.120241

    Article  CAS  Google Scholar 

  46. Liu X, Hou P, Chen H (2021) Effects of nanosilica on the hydration and hardening properties of slag cement. Constr Build Mater 282:122705. https://doi.org/10.1016/j.conbuildmat.2021.122705

    Article  CAS  Google Scholar 

  47. Deb PS, Sarker PK, Barbhuiya S (2016) Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2016.06.017

    Article  Google Scholar 

  48. Mohammed A, Rafiq S, Mahmood W, Noaman R (2020) Microstructure characterizations, thermal properties, yield stress, plastic viscosity and compression strength of cement paste modified with nanosilica. Integr Med Res 9(5):10941–10956. https://doi.org/10.1016/j.jmrt.2020.07.083

    Article  CAS  Google Scholar 

  49. Hou P et al (2020) Effects of mixing sequences of nanosilica on the hydration and hardening properties of cement-based materials. Constr Build Mater 263:120226. https://doi.org/10.1016/j.conbuildmat.2020.120226

    Article  CAS  Google Scholar 

  50. Hani N, Nawawy O, Ragab KS, Kohail M (2018) The effect of different water / binder ratio and nano-silica dosage on the fresh and hardened properties of self-compacting concrete. Constr Build Mater 165:504–513. https://doi.org/10.1016/j.conbuildmat.2018.01.045

    Article  CAS  Google Scholar 

  51. Calcina Y, Chagas G, Dias R, Filho T, Marcelo L (2017) Performance of Portland cement pastes containing nano-silica and different types of silica. Constr Build Mater 146:524–530. https://doi.org/10.1016/j.conbuildmat.2017.04.069

    Article  CAS  Google Scholar 

  52. Hosan A, Uddin F, Shaikh A, Sarker P, Aslani F (2020) Nano- and micro-scale characterisation of interfacial transition zone ( ITZ ) of high volume slag and slag-fly ash blended concretes containing. Constr Build Mater. no. xxxx, 121311. https://doi.org/10.1016/j.conbuildmat.2020.121311

  53. Ma C, He J, Qin T, Long G, Du Y, Xie Y (2020) A comparison of the influence of micro- and nano-silica on hydration kinetics of Portland cement under different temperatures. Constr Build Mater 248:118670. https://doi.org/10.1016/j.conbuildmat.2020.118670

    Article  CAS  Google Scholar 

  54. Tawfik TA, Aly K, El-beshlawy SA, Al DM, Tayeh BA (2020) Journal of King Saud University – Engineering Sciences Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties. J King Saud Univ Eng Sci. no. xxxx, 4–11. https://doi.org/10.1016/j.jksues.2020.06.007

  55. Du H (2019) Properties of ultra-lightweight cement composites with nano-silica. Constr Build Mater 199:696–704. https://doi.org/10.1016/j.conbuildmat.2018.11.225

    Article  CAS  Google Scholar 

  56. Gu L, Ying J, Ng P, Kwok A, Kwan H (2021) Synergistic cementing efficiencies of nano-silica and micro-silica in carbonation resistance and sorptivity of concrete. J Build Eng 33(August 2020):101862. https://doi.org/10.1016/j.jobe.2020.101862

    Article  Google Scholar 

  57. Maagi MT, Jun G (2020) Effect of the particle size of nanosilica on early age compressive strength in oil-well cement paste. Constr Build Mater 262:120393. https://doi.org/10.1016/j.conbuildmat.2020.120393

    Article  CAS  Google Scholar 

  58. Snehal K, Das BB, Akanksha M (2020) Early age, hydration, mechanical and microstructure properties of nano-silica blended cementitious composites. Constr Build Mater 233:117212. https://doi.org/10.1016/j.conbuildmat.2019.117212

    Article  CAS  Google Scholar 

  59. De Abreu GB, Mota S, Costa M, Gumieri AG, Márcio J, Calixto F (2017) Mechanical properties and microstructure of high performance concrete containing stabilized nano-silica

  60. Zhang M, Islam J, Peethamparan S (2012) Cement & Concrete Composites Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem Concr Compos 34(5):650–662. https://doi.org/10.1016/j.cemconcomp.2012.02.005

    Article  CAS  Google Scholar 

  61. Jalal M, Pouladkhan A, Fasihi O, Jafari D (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr Build Mater 94:90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001

    Article  Google Scholar 

  62. Bhusan B, Sudhirkumar M (2020) Influence of Incorporation of Colloidal Nano ‑ Silica on Behaviour of Concrete. Iran J Sci Technol Trans Civ Eng. (0123456789). https://doi.org/10.1007/s40996-020-00382-0

  63. Quercia G, Spiesz P, Hüsken G, Brouwers HJH (2014) Cement & Concrete Composites SCC modification by use of amorphous nano-silica. Cem Concr Compos 45:69–81. https://doi.org/10.1016/j.cemconcomp.2013.09.001

    Article  CAS  Google Scholar 

  64. Güneyisi E, Gesoglu M, Ali O, Öznur H (2016) Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates. 115: 371–380. https://doi.org/10.1016/j.conbuildmat.2016.04.055

  65. Abd S et al (2016) Effect of nano-SiO 2 ( NS ) on dolomite concrete towards alkali silica reaction. HBRC J 2:2–7. https://doi.org/10.1016/j.hbrcj.2016.08.004

    Article  Google Scholar 

  66. Fallah S, Nematzadeh M (2017) Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr Build Mater 132:170–187. https://doi.org/10.1016/j.conbuildmat.2016.11.100

    Article  CAS  Google Scholar 

  67. Nazari A, Riahi S (2011) The role of SiO 2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete. Mater Sci Eng A 528(4–5):2149–2157. https://doi.org/10.1016/j.msea.2010.11.064

    Article  CAS  Google Scholar 

  68. Massana J, Reyes E, Bernal J, León N, Sánchez-espinosa E (2018) Influence of nano- and micro-silica additions on the durability of a high-performance self-compacting concrete. Constr Build Mater 165:93–103. https://doi.org/10.1016/j.conbuildmat.2017.12.100

    Article  CAS  Google Scholar 

  69. Du H, Du S, Liu X (2015) Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Constr Build Mater 82:114–122. https://doi.org/10.1016/j.conbuildmat.2015.02.026

    Article  CAS  Google Scholar 

  70. Li G (2004) Properties of high-volume fly ash concrete incorporating nano-SiO 2. 34(November 2003): 1043–1049. https://doi.org/10.1016/j.cemconres.2003.11.013

  71. Hanbay S (2018) Micromechanical damage analysis and engineering performance of concrete with colloidal nano-silica and demolished concrete aggregates. 171: 634–642. https://doi.org/10.1016/j.conbuildmat.2018.03.197.

  72. Younis KH (2018) Feasibility of Using Nanoparticles of SiO 2 to Improve the Performance of Recycled Aggregate Concrete. 2018: 3–5

  73. Li W, Huang Z, Cao F, Sun Z, Shah SP (2015) Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Constr Build Mater 95:366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137

    Article  Google Scholar 

  74. Nandhini K (2020) Effect of Blending Micro and Nano Silica on the Mechanical and Durability Properties of Self-Compacting Concrete

  75. Nandhini K, Ponmalar V (2018) Passing ability, water and chloride penetration of self-compacting concrete using micro-silica as cementitious replacement material. Rev Rom Mater Rom J Mater 48(3):362–368

    CAS  Google Scholar 

  76. Nazari A (2012) Compressive strength and abrasion resistance of concrete containing SiO 2 and Cr 2 O 3 nanoparticles in different curing media. 64(2): 177–189

  77. Garcia R, Henao N, De la Rubia MA, Moragues A, Fernandez J (2020) Early contributing nanostructured cementitious matrix designs: Benefits in durable features at early ages. Constr Build Mater. 241. https://doi.org/10.1016/j.conbuildmat.2019.117941

  78. Mosaberpanah MA, Eren O, Tarassoly AR (2018) The effect of nano-silica and waste glass powder on mechanical , rheological , and shrinkage properties of UHPC using response surface methodology. Integr Med Res. no. x x. 4–11. https://doi.org/10.1016/j.jmrt.2018.06.011

  79. Motahari SM, Balapour M, Karakouzian M (2019) Improving the hardened and transport properties of perlite incorporated mixture through different solutions : Surface area increase, nanosilica incorporation or both. Constr Build Mater 209:187–194. https://doi.org/10.1016/j.conbuildmat.2019.03.101

    Article  CAS  Google Scholar 

  80. Ghafari E, Costa H, Eduardo J, Dur L (2014) The effect of nanosilica addition on flowability , strength and transport properties of ultra high performance concrete. 59; 1–9. https://doi.org/10.1016/j.matdes.2014.02.051

  81. Son HM, Park SM, Jang JG, Lee HK (2018) Effect of nano-silica on hydration and conversion of calcium aluminate cement q. Constr Build Mater 169:819–825. https://doi.org/10.1016/j.conbuildmat.2018.03.011

    Article  CAS  Google Scholar 

  82. Newell M, Garcia-taengua E (2019) Fresh and hardened state properties of hybrid graphene oxide / nanosilica cement composites. Constr Build Mater 221:433–442. https://doi.org/10.1016/j.conbuildmat.2019.06.066

    Article  CAS  Google Scholar 

  83. Sikora P et al (2021) The effects of nanosilica on the fresh and hardened properties of 3D printable mortars. Constr Build Mater 281:122574. https://doi.org/10.1016/j.conbuildmat.2021.122574

    Article  CAS  Google Scholar 

  84. Mahdikhani M, Bamshad O, Fallah M (2018) Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Constr Build Mater 167:929–935. https://doi.org/10.1016/j.conbuildmat.2018.01.137

    Article  CAS  Google Scholar 

  85. Kong D, Pan H, Wang L, Corr DJ, Yang Y, Shah SP (2019) E ff ect and mechanism of colloidal silica sol on properties and microstructure of the hardened cement-based materials as compared to nano-silica powder with agglomerates in micron-scale. Cem Concr Compos 98(January):137–149. https://doi.org/10.1016/j.cemconcomp.2019.02.015

    Article  CAS  Google Scholar 

  86. Liu Y, Chen B, Qin Z (2020) Effect of nano-silica on properties and microstructures of magnesium phosphate cement. Constr Build Mater 264:120728. https://doi.org/10.1016/j.conbuildmat.2020.120728

    Article  CAS  Google Scholar 

  87. Yasin M, Nuri H (2018) Strength, elastic and microstructural properties of SCCs ’ with colloidal nano silica addition. Constr Build Mater 158:295–307. https://doi.org/10.1016/j.conbuildmat.2017.10.041

    Article  CAS  Google Scholar 

  88. Mukharjee BB, Barai SV (2014) Influence of Nano-Silica on the properties of recycled aggregate concrete. Constr Build Mater 55:29–37. https://doi.org/10.1016/j.conbuildmat.2014.01.003

    Article  Google Scholar 

  89. Zabihi N, Ozkul MH (2018) The fresh properties of nano silica incorporating polymer-modified cement pastes. Constr Build Mater 168:570–579. https://doi.org/10.1016/j.conbuildmat.2018.02.084

    Article  CAS  Google Scholar 

  90. Rostami MR, Abbassi-sourki F, Bouhendi H (2019) Synergistic effect of branched polymer / nano silica on the microstructures of cement paste and their rheological behaviors. Constr Build Mater 201:159–170. https://doi.org/10.1016/j.conbuildmat.2018.12.103

    Article  CAS  Google Scholar 

  91. Bai S, Guan X, Li G (2020) Effect of the early-age frost damage and nano-SiO 2 modification on the properties of Portland cement paste. Constr Build Mater 262:120098. https://doi.org/10.1016/j.conbuildmat.2020.120098

    Article  CAS  Google Scholar 

  92. ASTM (2013) ASTM.C191–13 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle." ASTM International: West Conshohocken, PA, USA

  93. IS 4031- Part IV: Methods of physical tests for hydraulic cement. Part IV Determination of consistency of standard cement paste, Bur. Indian Stand. New Delhi. Reaffirmed (1988). IS 4031- Part V: Methods of physical tests for hydraulic cement. Part V Determination of initial and final setting times, Bur. Indian Stand. New Delhi. Reaffirmed (1988)

  94. C. Astm, 230 (2008) Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, PA ASTM Int., West Conshohocken

  95. IS 5512–1983 (1983) Specification for flow table for use in tests of hydraulic cements and pozzolanic materials, Bur. Indian Stand. New Delhi. Reaffirmed

  96. ASTM.C143715 (2015) Standard test method for flow of hydraulic cement mortar. West Conshohoken, PA, USA: ASTM International

  97. BS EN 1015–3 (1999) Methods of test for mortar for masonry. Determination of consistence of fresh mortar (by flow table), British Standards Institution-BSI and CEN European Committee for Standardization

  98. European, Committee for Standardization. EN 445: 2007 Grout for prestressing tendons Test methods (1997)

  99. GB/T 50080–2016 (2016) Standard for test method of performance of ordinary fresh concrete. Ministry of Housing and Urban-Rural Development, China (in Chinese)

  100. ASTM C1611 (2018) Standard Test Method for Slump Flow of Self-Consolidating Concrete, West Conshohocken, PA

  101. ASTM C39/C39 M-12, American society for Testing and Materials (2012) Standard test method for compressive strength of cylindrical concrete specimens. Annual book of ASTM Standard

  102. ASTM C109/C109M-02 (2002) Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International, West Conshohocken, PA. 6

  103. UNE-EN 197–1:2011 Cement - Part 1: Composition, specifications and conformity criteria for common cements. Asociación Española de Normalización y Certificación. AENOR. Spain. www.aenor.es

  104. ASTM C349–14 (2014) Standard Test Method for Compressive Strength of Hydrauliccement Mortars (Using Portions of Prisms Broken in Flexure), ASTM International, West Conshohocken

  105. CEN EN 196–1 (2005) Methods of testing cement-Part 1: Determination of strength, European Committee for standardization

  106. BSI, Methods of Test for Mortar for Masonry – Determination of Flexural and Compressive Strength of Hardened Mortar. EN1015–11:1999, British Standards (2007).

  107. IS 2250 (1981): Code of Practice for Preparation and Use of Masonry Mortars [CED 13: Building Construction Practices including Painting, Varnishing and Allied Finishing], Bur. Indian Stand. New Delhi New Delhi. Reaffirmed (1981)

  108. Method of testing cements-determination of strength, GB/T 17671–1999.

  109. ASTM Standard C192/C192M (2002) Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken, PA, U.S.A

  110. IS: 516 (1959) Indian Standard methods of tests for strength concrete. Bureau of Indian Standards, New Delhi; [Reaffirmed in 1999]

  111. European Committee for Standardization (2009) EN 12390–3:2009 Testing hardened concrete - Part 3: Compressive strength of test specimens

  112. ASTMC496/496M-16, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/C0496_C0496M-17

  113. Atmaca N, Layth M, Atmaca A (2017) Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete. Constr Build Mater 147:17–26. https://doi.org/10.1016/j.conbuildmat.2017.04.156

    Article  CAS  Google Scholar 

  114. IS 5816–1999: Method of Test Splitting Tensile Strength of Concrete [CED 2: Cement and Concrete], Bur. Indian Stand. New Delhi. Reaffirmed (1999).

  115. ASTM (2014) American Society for Testing and Materials, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression (C469). Annual book of ASTM standards, vol. 04.02. West Conshohocken, Pennsylvania, USA

  116. ISO 1920 – Part 10, Testing of concrete: Determination of static modulus of elasticity in compression, International Organization for Standardization, Geneva, Switzerland (2010)

  117. DIN 52108 (2010) Wear Test Using the Grinding Wheel According to Böhme

  118. ASTM (2001c) C1138: Standard test method for abrasion resistance of concrete (underwater method). West Conshohocken, PA, USA

  119. ASTM D4404–84(2004)Standard Test Method for Determination of Pore Volume and Pore Distribution od Soil and Rock by Mercury Intrusion Pa, 2004 www.astm.org.

  120. ASTM C 642 (2013) Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International

  121. ASTM C1202–19 (2019) Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials, USA

  122. ASTM C1585–13 (2014) Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes annual book of ASTM standards, vol.04.02. American Society for Testing and Materials

  123. ASTMC1403–15 (2015) Standard Test Method for Rate of Water Absorption ofMasonry Mortars, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C1403-15

  124. RILEM TC 116-PCD (1999) Permeability of concrete as a criterion of its durability. Mater. Struct 32:174–179

    Google Scholar 

  125. ASTM C1012–04 (2004) Standard Test Method for Length Change of Hydraulic Cement Mortars Exposed to a Sulfate Solution. ASTM International, West Conshohocken, PA

  126. CEN/TS 12390–11: 2010. Testing hardened concrete - Part 11: Determination of the chloride resistance of concrete, unidirectional diffusion. European Committee for Standardization

  127. N. Build, 492 (1999) Concr. Mortar Cem. Repair Mater. Chloride Migr. Coeff. From Non steady-state Migr. Exp. vol 3

  128. GB/T 50082–2009 (2009) Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete, Ministry of Housing and Urban-Rural Development, China (in Chinese)

  129. C. Gehlen (2011), RILEM CPC 18, Measurement of hardened concrete carbonation depth, in: RILEM Tech. Comm. TDC. pp. 1–11

  130. Nandhini K, Ponmalar V (2020) Materials Express 10(1):10–20. https://doi.org/10.1166/mex.2020.1618

    Article  CAS  Google Scholar 

  131. Nandhini K, Ponmalar V (2018) Microstructural behaviour and flowing ability of self-compacting concrete using micro- and nano-silica. 13:1213–1218. https://doi.org/10.1049/mnl.2018.0105

  132. Puentes J, Barluenga G, Palomar I (2015) Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability. Constr Build Mater 81:154–161. https://doi.org/10.1016/j.conbuildmat.2015.02.053

    Article  Google Scholar 

  133. Makarova NV, Potapov VV, Kozin AV, Chusovitin EA, Amosov AV, Nepomnyashiy AV (2017) Influence of Hydrothermal Nanosilica on Mechanical Properties of Plain Concrete. 744: 126–130. https://doi.org/10.4028/www.scientific.net/KEM.744.126

  134. Alhawat M, Ashour A, El-khoja A (2019) Influence of using different surface areas of nano silica on concrete properties Influence of Using Different Surface Areas of Nano Silica on Concrete Properties. 020007 (August): pp. 1–8

  135. Praveenkumar S, Sankarasubramanian G, Sindhu S (2020) Strength, permeability and microstructure characterization of pulverized bagasse ash in cement mortars. Constr Build Mater 238:117691. https://doi.org/10.1016/j.conbuildmat.2019.117691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wish to thank Dr.K.Prakasan, Principal, PSG College of Technology, Coimbatore for the facilities provided to carry out this review work.

Author information

Authors and Affiliations

Authors

Contributions

Gayathiri K- Conceptualization, Methodology and Investigation, Praveenkumar S- Writing- Original draft preparation, Reviewing and Editing.

Corresponding author

Correspondence to S. Praveenkumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent of Publication

Not applicable.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathiri, K., Praveenkumar, S. Influence of Nano Silica on Fresh and Hardened Properties of Cement-based Materials – A Review. Silicon 14, 8327–8357 (2022). https://doi.org/10.1007/s12633-021-01598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01598-z

Keywords

Navigation