Skip to main content
Log in

Silica Supported Acids (SiO2-HClO4, SiO2-KHSO4) as Eco-Friendly Reuasble Catalysts for Bromination of Aromatic and Heteroaromatic Compounds Using KBr under Solvothermal and Solvent-Free Conditions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silica supported acids like Si-KHSO4, and Si-HClO4 are explored as reusable nano green catalysts for bromination of aromatic and hetero aromatic compounds using KBr under solvothermal, and solvent-free conditions. Reaction times reduced from (4–6) hours under conventional solvothermal protocols to (9–12) minutes under ultrasonic sonucation for completion. But, solvent-free microwave assisted reactions required only (1–5) minutes exhibiting striking rate accelerations compared to the solvothermal and ultrasonic assisted protocols. All the reaction protocols afforded fairly good yields of brominated products, which are comparable with existing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown RS (1997) Investigation of the early steps in electrophilic Bromination through the study of the reaction with sterically encumbered olefins. Acc Chem Res 30(3):131–137. https://doi.org/10.1021/ar960088e

    Article  CAS  Google Scholar 

  2. Larock RC (1999) Comprehensive organic transformations2nd edn. Wiley-VCH, New York

    Google Scholar 

  3. Podgor-sek A, Zupan M, Iskra J (2009) Oxidative halogenation with “green” oxidants: Oxygen and hydrogen peroxide. Angew Chem Int 48(45):8424–8450. https://doi.org/10.1002/anie.200901223

    Article  CAS  Google Scholar 

  4. Bora U, Chaudhuri MK, Dey D, Dhar SS (2001) Peroxometal-mediated environmentally favorable route to brominating agents and protocols for bromination of organics. Pure Appl Chem 73(1):93–102. https://doi.org/10.1351/pac200173010093

    Article  CAS  Google Scholar 

  5. Srivastava SK, Chauhan PMS, Bhaduri AP (1996) Novel site-specific one-step bromination of substituted benzenes. Chem Commun 23:2679–2680. https://doi.org/10.1039/CC9960002679

    Article  Google Scholar 

  6. Clark JH, Ross JC, Macquarrie DJ, Barlow SJ, Bastock TW (1997) Environmentally friendly catalysis using supported reagents: the fast and selective bromination of aromatic substrates using supported zinc bromide1. Chem Commun 13:1203–1204. https://doi.org/10.1039/A702399E

    Article  Google Scholar 

  7. Smith K, El-Hiti GA, Hammond MEW, Bahzad D, Li Z, Siquet C (2000) Highly efficient and selective electrophilic and free radical catalytic bromination reactions of simple aromatic compounds in the presence of reusable zeolites. J Chem Soc Perkin Trans 1(16):2745–2752. https://doi.org/10.1039/B002157L

    Article  Google Scholar 

  8. Schmid H (1946) Bromierungen mit Brom-succinimid bei Gegenwart von Katalysatoren, II. Helv Chim Acta 29(5):1144–1151. https://doi.org/10.1002/hlca.19460290520

    Article  CAS  Google Scholar 

  9. Duan J, Zhang LH, Dolbier Jr WR (1999) A convenient new method for the Bromination of deactivated aromatic compounds. Synlett. 8:1245–1246. https://doi.org/10.1055/S-1999-2818

    Article  Google Scholar 

  10. Bovonsombat P, McNelis E (1993) Ring halogenations of Polyalkylbenzenes with N-Halosuccinimide and acidic catalysts. Synthesis 2:237–241. https://doi.org/10.1055/s-1993-25839

    Article  Google Scholar 

  11. Auerbach J, Weissman SA, Blacklock TJ, Angeles MR, Hoogsteen.K. (1993) N-Bromosuccinimide/Dibromodimethylhydantoin in aqueous base: A practical method for the bromination of activated benzoic acids. Tetrahedron Lett 34(6):931–934. https://doi.org/10.1016/S0040-4039(00)77457-0

    Article  CAS  Google Scholar 

  12. Konishi VH, Aritomi K, Okano T, Kiji J (1989) A Mild Selective Monobromination Reagent System for Alkoxybenzenes; N-Bromosuccinimide–Silica Gel. Bull Chem Soc Jpn 62(2):591–593. https://doi.org/10.1246/bcsj.62.591

    Article  CAS  Google Scholar 

  13. Ranu BC, Sarkar DC, Chakraborty R (1992) A simple and improved procedure for selective ring Bromination of alkyl-substituted aromatic hydrocarbons on the surface of alumina. Synth Commun 22(8):1095–1099. https://doi.org/10.1080/00397919208021092

    Article  CAS  Google Scholar 

  14. Vega F, Sasson Y, Huddersman K (1993) Highly selective bromination of toluene in a bromine—oxirane—zeolite system. Zeolites 13(5):341–347. https://doi.org/10.1016/0144-2449(93)90148-V

    Article  Google Scholar 

  15. Smith K, Bahzad D (1996) Highly efficient Para-selective bromination of simple aromatic substrates by means of bromine and a reusable zeolite. J Chem Commun 4:467–468. https://doi.org/10.1039/CC9960000467

    Article  Google Scholar 

  16. Goldberg Y, Alper H (1994) Electrophilic halogenation of aromatics and heteroaromatics with N-halosuccinimides in a solid/liquid system using an H+ ion exchanger or ultrasonic irradiation. J Mol Catal 88(3):377–383. https://doi.org/10.1016/0304-5102(93)E0278-O

    Article  CAS  Google Scholar 

  17. Paul V, Sudalai A, Daniel T, Srinivasan KV (1994) Regioselective bromination of activated aromatic substrates with N-bromosuccinimide over HZSM-5. Tetrahedron Lett 35(38):7055–7056. https://doi.org/10.1016/0040-4039(94)88224-X

    Article  CAS  Google Scholar 

  18. Barhate NB, Gajare AS, Wakharkar RD, Bedekar AV (1998) Simple and efficient chlorination and bromination of aromatic compounds with aqueous TBHP (or H2O2) and a hydrohalic acid. Tetrahedron Lett 39(35):6349–6350. https://doi.org/10.1016/S0040-4039(98)01305-7

    Article  CAS  Google Scholar 

  19. Majetich G, Hicks R, Reister S (1997) Electrophilic aromatic Bromination using Bromodimethylsulfonium bromide generated in situ. J Organomet Chem 62(13):4321–4326. https://doi.org/10.1021/jo970135w

    Article  CAS  Google Scholar 

  20. Voskressensky LG, Golantsov NE, Maharramov AM (2016) Recent advances in Bromination of aromatic and Heteroaromatic compounds. Synthesis 48(05):615–643. https://doi.org/10.1055/s-0035-1561503

    Article  CAS  Google Scholar 

  21. Levy JN, Alegre-Requena JV, Liu R, Paton RS, McNally A (2020) Selective halogenation of pyridines using designed phosphine reagents. J Am Chem Soc 142(25):11295–11305. https://doi.org/10.1021/jacs.0c04674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das B, Venkateswarlu K, Krishnaiah M, HarishHolla (2006) An efficient, rapid and regioselective nuclear bromination of aromatics and heteroaromatics with NBS using sulfonic-acid-functionalized silica as a heterogeneous recyclable catalyst. Tetrahedron Lett 47(49):8693–8697. https://doi.org/10.1016/j.tetlet.2006.10.029

    Article  CAS  Google Scholar 

  23. Singhal S, Jain SL, Sain B (2006) A simple and improved regioselective bromination of aromatic compounds using N-methylpyrolidin-2-one hydrotribromide and aqueous hydrogen peroxide under mild reaction conditions. J Mol Catal A Chem 258(1–2):198–202. https://doi.org/10.1016/j.molcata.2006.05.042

    Article  CAS  Google Scholar 

  24. Artasensi A, Pedretti A, Vistoli G, Fumagalli L (2021) Regioselective, efficient and sustainable Bromination process for the synthesis of the antimicrobial agent Bromiphen bromide. Org Prep Proced Int 53(5). https://doi.org/10.1080/00304948.2021.1956849

  25. Chaudhuri SK, Sanchita R, Saha M, Bhar S (2007) Regioselective aromatic electrophilic Bromination with Dioxane dibromide under solvent-free conditions. Synth Commun 37(4):579–583. https://doi.org/10.1080/00397910601055081

    Article  CAS  Google Scholar 

  26. Wortel TM, Oudijn D, Vleugel CJ, Roelofsen DP, van Bekkum H (1979) Selective bromination of halobenzenes using zeolite catalysts. J Catal 60(1):110–120. https://doi.org/10.1016/0021-9517(79)90073-3

    Article  CAS  Google Scholar 

  27. Asgari Bajgirani M (2021) Application of Ziegler-Nata catalysts in the synthesis of polyolefin. Prog Chem Biochem Res 4(1):20–31. https://doi.org/10.22034/pcbr.2021.118046

    Article  CAS  Google Scholar 

  28. Moosavi-Zare AR, Goudarziafshar H, Jalilian Z (2019) Tandem Knoevenagel-Michael-cyclocondensation reaction of malononitrile, various aldehydes and barbituric acid derivatives using isonicotinic acid as an efficient catalyst. Prog Chem Biochem Res 2(2):59–65. https://doi.org/10.33945/SAMI/PCBR.2019.2.2.3

    Article  CAS  Google Scholar 

  29. Jalilian R, Shahmari M, Taheri A, Gholami K (2020) Ultrasonic-assisted micro solid phase extraction of arsenic on a new ion-imprinted polymer synthesized from chitosan-stabilized Pickering emulsion in water, rice and vegetable samples. Ultrason Sonochem 61:104802. https://doi.org/10.1016/j.ultsonch.2019.104802

    Article  CAS  PubMed  Google Scholar 

  30. Mukut G, van Tonder JH, Benzuidenhoudt BCB (2015) NaHSO4-SiO2: An efficient reusable green catalyst for selective C-3 Propargylation of indoles with tertiary propargylic alcohols. Iran J Chem Chem Eng 34(3):11–17. https://doi.org/10.30492/ijcce.2015.14747

    Article  Google Scholar 

  31. Azarifar D, Forghaniha A (2006) A novel Chemoselective reaction of aldehydes with 2-Mercaptoethanol catalyzed by SiO2-NaHSO4 under solvent-free condition. J Chin Chem Soc 53(5):1189–1192. https://doi.org/10.1002/jccs.200600157

    Article  CAS  Google Scholar 

  32. Mishra S, Ghosh R (2011) Mechanistic studies on a new catalyst system (CuI-NaHSO4×SiO2) leading to the one-pot synthesis of Imidazo[1,2-a] pyridines from reactions of 2-Aminopyridines, aldehydes, and terminal alkynes. Synthesis. 21:3463–3470. https://doi.org/10.1055/s-0030-1260255

    Article  CAS  Google Scholar 

  33. Kinfe HH, Mebrahtu FM, Moshapo PT (2013) Solvent-free NaHSO4-SiO2-catalyzed efficient Tetrahydropyranylation of alcohols and phenols. Synth Commun 43(9):1237–1242. https://doi.org/10.1080/00397911.2011.629068

    Article  CAS  Google Scholar 

  34. Siddiqui ZN, Farooq F (2012) Silica supported sodium hydrogen sulfate (NaHSO4–SiO2): A novel, green catalyst for synthesis of pyrazole and pyranyl pyridine derivatives under solvent-free condition via heterocyclic β-enaminones. J Mol Catal A Chem 363-364:451–459. https://doi.org/10.1016/j.molcata.2012.07.024

    Article  CAS  Google Scholar 

  35. Maghsoodlou MT, Heydari R, Habibi-Khorassani SM, Hazeri N, Sajadikhah SS, Rostamizadeh M, Lashkari M (2012) One-pot, three-component synthesis of α-amino phosphonates using NaHSO4-SiO2 as an efficient and reusable catalyst. Synth Commun 42(1):136–143. https://doi.org/10.1080/00397911.2010.523153

    Article  CAS  Google Scholar 

  36. Chari MA, Syamasundar K (2004) Silicagel supported sodium hydrogensulfate as a heterogenous catalyst for high yield synthesis of 3,4-dihydropyrimidin-2 (1H)-ones. J Mol Catal A Chem 221(1–2):137–139. https://doi.org/10.1016/j.molcata.2004.06.019

    Article  CAS  Google Scholar 

  37. Adharvana Chari M, Syamasundar (2005) Silica gel/NaHSo4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Catal Commun 6(9):624–626. https://doi.org/10.1016/j.catcom.2005.03.010

    Article  CAS  Google Scholar 

  38. Das B, Ravikanth B, Laxminarayana K, VittalRao B (2006) A simple and facile synthesis of homoallylic amines using silica supported sodium hydrogen sulfate. J Mo Catal A: Chemical 253(1–2):92–95. https://doi.org/10.1016/j.molcata.2006.03.007

    Article  CAS  Google Scholar 

  39. Das B, Banerjee J (2004) Silica-supported Sodium Hydrogen Sulfate and Amberlyst-15: Two Efficient Heterogeneous Catalysts for Single-step Synthesis of 4(3H)-Quinazolinones from Anthranilic Acid, Ortho Esters, and Amines under Solvent Free Conditions. Chem Lett 33(8):960–961. https://doi.org/10.1246/cl.2004.960

    Article  CAS  Google Scholar 

  40. Khan AT, Choudhury LH, Ghosh S (2006) Silica supported perchloric acid (HClO4-SiO2): A highly efficient and reusable catalyst for geminal diacylation of aldehydes under solvent-free conditions. J Mo Catal A: Chemical 255(1–2):230–235. https://doi.org/10.1016/j.molcata.2006.04.008

    Article  CAS  Google Scholar 

  41. Bigdeli MA, Heravi MM, Mahdavinia GH (2007) Silica supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes. J Mo Catal A: Chemical 275(1–2):25–29. https://doi.org/10.1016/j.molcata.2007.05.007

    Article  CAS  Google Scholar 

  42. Bigdeli MA, Nemati F, Mahdavinia GH (2007) HClO4–SiO2 catalyzed stereoselective synthesis of β-amino ketones via a direct Mannich-type reaction. Tetrahedron Lett 48(38):6801–6804. https://doi.org/10.1016/j.tetlet.2007.07.088

    Article  CAS  Google Scholar 

  43. Bandgar BP, Gawande SG, Muley DB (2010) Silica supported perchloric acid (HClO4-SiO2): A green, reusable, and highly efficient heterogeneous catalyst for the synthesis of thioethers under solvent-free conditions at room temperature. Green Chem Lett Rev 3(1):49–54. https://doi.org/10.1080/17518250903447118

    Article  CAS  Google Scholar 

  44. Maheswara M, Siddaiah V, Damu GLV, Rao CV (2006) An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using heterogeneous catalyst under solvent-free conditions. ARKIVOC 2006(ii):201–206. https://doi.org/10.3998/ark.5550190.0007.223

    Article  Google Scholar 

  45. Yuguo D, Wei G, Cheng S, Hua Y, Linhardt RJ (2006) HClO4–SiO2 catalyzed glycosylation using sugar trichloroacetimidates as glycosyl donors. Tetrahedron Lett 47:307–310. https://doi.org/10.1016/j.tetlet.2005.11.025

    Article  CAS  Google Scholar 

  46. Murthy YLN, Diwakar BS, Govindh B, Venu R, Nagalakshmi K (2013) Silica Perchloric acid matrix supported ring opening of epoxide under microwave radiation. ChemSci Trans 2(3):805–812. https://doi.org/10.7598/cst2013.471

    Article  CAS  Google Scholar 

  47. Choudary BM, Sudha Y, Reddy PN (1994) Regioselective Oxybromination of activated aromatic compounds catalysed by ammonium Molybdate. Synlett. 6:450. https://doi.org/10.1055/s-1994-22886

    Article  Google Scholar 

  48. Bandgar BP, Nigal NJ (1998) Regioselective Catalytic Halogenation of Aromatic Substrates. Synthetic Com 28(17):3225–3229. https://doi.org/10.1080/00397919808004426

    Article  CAS  Google Scholar 

  49. Tamhankar BV, Desai UV, Mane RB, Wadgaonkar PP, Bedekar AV (2001) A simple and practical halogenation of activated arenes using potassium halide and oxone in water-acetonitrile medium. Synthetic Com 31(13):2021–2027. https://doi.org/10.1081/SCC-100104419

    Article  CAS  Google Scholar 

  50. Narender N, Srinivasu P, Ramakrishna Prasad M, Kulkarni SJ, Raghavan KV (2002) An efficient and regioselective oxybromination of aromatic compounds using potassium bromide and oxone. Synthetic Com 32(15):2313–2318. https://doi.org/10.1081/SCC-120006001

    Article  CAS  Google Scholar 

  51. Reza HA, MallakpourShadpour E, AdibiHadi (2000) Benzyltriphenylphosphonium Peroxymonosulfate: as a novel and efficient reagent for oxidation of alcohols under solvent-free conditions. Chem Lett 29(5):460–461. https://doi.org/10.1246/cl.2000.460

    Article  Google Scholar 

  52. Hajipour AR, Mallakpour SE, Adibi H (2001) Oxidation of Urazoles to Triazolinediones with Benzyltriphenylphosphonium Peroxymonosulfate under solvent-free conditions. Chem Lett 30(2):164–165. https://doi.org/10.1246/cl.2001.164

    Article  Google Scholar 

  53. Hajipour AR, Mallakpour SE, Baltork IM, Adibi H (2001) Conversion of oximes, phenylhydrazones, 2,4-dinitrophenylhydrazones, and semicarbazones to corresponding carbonyl compounds with benzyltriphenylphosphonium peroxymonosulfate (bnph3p+hso5 ) (btppms) in the presence of bismuth chloride under non-aqueous conditions. Synth Commun 31(22):3401–3409. https://doi.org/10.1081/SCC-100106197

    Article  CAS  Google Scholar 

  54. Hajipour AR, Mallakpour SE, Adibi H (2002) A selective solid-state oxidation of sulfides and thiols with Benzyltriphenylphosphonium Peroxymonosulfate. Phosphorus Sulfur Silicon 177(10):2277–2284. https://doi.org/10.1080/10426500214100

    Article  CAS  Google Scholar 

  55. Hajipour AR, Mallakpour SE, Baltork IM, Adibi H (2002) A convenient method for Dethioacetalization of 1,3-Dithiolanes and 1,3-Dithianes using Benzyltriphenylphosphonium Peroxymonosulfate in aprotic solvent. Phosphorus Sulfur Silicon 177(12):2805–2811. https://doi.org/10.1080/10426500214884

    Article  CAS  Google Scholar 

  56. Siddiqui ZN (2019) A convenient synthesis of coumarinyl chalcones using HClO4–SiO2: a green approach. Arab J Chem 12(8):2788–2797. https://doi.org/10.1016/j.arabjc.2015.06.013

    Article  CAS  Google Scholar 

  57. Hemanth Sriram Y, Fatima T, Satish Kumar M, Rajanna KC, Venkateswarlu M, Sai Sudhakar M, Madhusudan Raju R (2017) Reusable silica supported perchloric acid and potassium bisulphate as green catalysts for thiocyanation of aromatic compounds under solvent free conditions. Iran Chem Commun 5(3):352–363

    Google Scholar 

  58. Fatima T, Hemanth Sriram Y, Satish Kumar M, Venkateswarlu M, Rajanna KC (2017) Silica-supported HClO4 and KHSO4 as reusable green catalysts for sulfonation of aromatic compounds under solvent-free conditions. Asian J Green Chem 1(2):69–77. https://doi.org/10.22631/ajgc.2017.95574.1016

    Article  CAS  Google Scholar 

  59. Anastas P, Warner J (1998) In Green Chemistry: Theory and Practice. Oxford University Press, New York ISBN:0198502346, 9780198502340

    Google Scholar 

  60. Mason TJ, Lorimer JP (1989) Sonochemistry: theory, applications and uses of ultrasound in chemistry. Ellis Horwood Ltd 93(10):1150–1151. https://doi.org/10.1002/bbpc.19890931025

    Article  Google Scholar 

  61. Suslick, K.S. (1988) Ultrasound, it’s chemical, physical and biological effects. VCH Publishers, Inc.

  62. Singh V, Kaur KP, Khurana A, Kad GL (1998) Ultrasound: A boon in the synthesis of organic compounds. Resonance 3(9):56–60. https://doi.org/10.1007/BF02836081

    Article  CAS  Google Scholar 

  63. Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37(8):1546–1557. https://doi.org/10.1039/B716534J

    Article  CAS  PubMed  Google Scholar 

  64. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron. 57(45):9225–9283. https://doi.org/10.1016/S0040-4020(01)00906-1

    Article  Google Scholar 

  65. Varma RS (1999) Solvent-free organic syntheses . Using supported reagents and microwave irradiation. Green Chem 1(1):43–55. https://doi.org/10.1039/A808223E

    Article  CAS  Google Scholar 

  66. Oliver Kappe C (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43(46):6250–6284. https://doi.org/10.1002/anie.200400655

    Article  CAS  Google Scholar 

  67. Nath J, Chaudhuri MK (2008) Boric acid catalyzed bromination of a variety of organic substrates: an eco-friendly and practical protocol. Green Chem Lett Rev 1:223–230

    Article  CAS  Google Scholar 

  68. Venkateswarlu, K., Suneel, K., Das,B., Nagabhushana Reddy, K.,Sreenivasulu Reddy, T.: Simple -free Regio- and Chemoselective Monobromination of aromatics using NBS in polyethylene glycol, Synth Commun, 2008, 39, 215–219

  69. Dey RR, Dhar SS (2013) Ammonium persulphate promoted synthesis of polyethylene glycol entrapped potassium tribromide and its application in acylation and bromination of some selective organic compounds. ChinChem Lett 24:866–868

    CAS  Google Scholar 

  70. Ma X, Yu J, Jiang M, Wang M, Tang L, Wei M, Zhou Q (2019) Mild and Regioselective Bromination of phenols with TMSBr. Eur J Org Chem. https://doi.org/10.1002/ejoc.201900794

  71. Chakradhar A, Roopa R, Rajanna KC, Saiprakash PK (2009) Vilsmeier-Haack Bromination of aromatic compounds with KBr and N-Bromosuccinimide under solvent-free conditions. Synth Commun 39:1817–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Head, Department of Chemistry, Osmania University, Hyderabad for facilities. Authors are grateful to Professor P. K. Saiprakash (Former Dean, Faculty of Science, O.U)), and Prof. Authors are grateful to Professor P. K. Saiprakash (Former Dean, Faculty of Science, O.U)), and Prof. T.Navaneeth Rao (former Vice-chancellor, O.U), for constant encouragement. Authors are thankful to CSIR-IICT, Hyderabad, and Central Instrumentation Centre, O.U. for providing spectroscopic and BET studies.

Availability of the Data and Materials

All the data emodied in this manuscript are prepared by following the research ethics, and it may be avialable to th readers after publication according the conditions of Publishers of this journal.

Funding

Funding is not reecieved specifically for this work. However, one of the authors (Vijay Shekar Pulusu) is highly thankful to CSIR, New Delhi for the award of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding author

Correspondence to Chinna Rajanna Kamatala.

Ethics declarations

Authors declare that none of them have any conflict of interest.

Authors Consent to Participate

All the authors participated enthusiastically in the experimental work and also the prepartion of manuscript under the guidance of Corresponding author (Prof. K. C. Rajanna). We have followed all ethics neeeded for reeseach activity in our laboratory. This part of the research work does not involve either Human Participants and/or Animals as tools in case studies.

Authors Consent for Publication

The authors herey declare that the work is original and solely submitted only to this journal. It is not submitted any where. All the funding bodies, and institutions are gratefully acknowledged appropriately.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulusu, V.S., Kamatala, C.R., Mardhanpally, A.K. et al. Silica Supported Acids (SiO2-HClO4, SiO2-KHSO4) as Eco-Friendly Reuasble Catalysts for Bromination of Aromatic and Heteroaromatic Compounds Using KBr under Solvothermal and Solvent-Free Conditions. Silicon 14, 7781–7791 (2022). https://doi.org/10.1007/s12633-021-01489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01489-3

Keywords

Navigation