Skip to main content
Log in

Thermal Conductivity and Heat Capacity of Silicene Nanotube Compared to Silicene Nanoribbon

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We use the third nearest tight binding model to investigate the thermo-electric properties of (N,0) zigzag Silicene nanotubes (ZN-SiNTs) for β [n = 3s0 + 1] and γ [n = 3s0 + 1] types with integer number s0. We validated our tight binding model by density functional theory (DFT) data. The Green function approach is employed to investigate the thermal properties of the ZN-SiNTs. Our calculations indicate that ZN-SiNTs have a direct band gap, which decreases with diameter. For the constant diameter, the thermal properties increase with the temperature, because the thermal energy of charge carriers increases with temperature. Larger diameter SiNTs have higher thermal properties due to the smaller band gap. The γ-type SiNTs have higher thermal intensities as compared to the β-type, because based on smaller band gap, their charge carriers need more thermal energy to excitation to conduction bands. By comparing the thermal properties of (N,0) armchair Silicene nanoribbons (AN-SiNRs) and ZN-SiNTs, we found that the thermal properties ZN-SiNT is smaller than that of the AN-SiNR with corresponding N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Iijima S, Ichihashi T (1993)Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  2. Dresselhaus MDG, Saito R (1998) Physical properties of carbon nanotubes

  3. Saito R et al (1992)Electronic-structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  4. Jiang J et al (2004) Optical absorption matrix elements in single-wall carbon nanotubes. Carbon 42(15):3169–3176

    Article  CAS  Google Scholar 

  5. Bengu E, Marks LD (2001)Single-walled BN nanostructures. Phys Rev Lett 86(11):2385–2387

    Article  CAS  PubMed  Google Scholar 

  6. Alfieri G, Kimoto T (2010) Engineering the band gap of SiC nanotubes with a transverse electric field. Appl Phys Lett 97(4):043108

    Article  Google Scholar 

  7. Chowdhury S, Jana D (2016) A theoretical review on electronic, magnetic and optical properties of silicene. Rep Prog Phys 79(12):126501

    Article  PubMed  Google Scholar 

  8. Castrucci P et al (2006) Silicon nanotubes: Synthesis and characterization. Thin Solid Films 508(1):226–230

    Article  CAS  Google Scholar 

  9. De Crescenzi M et al (2005) Experimental imaging of silicon nanotubes. Appl Phys Lett 86(23):231901

    Article  Google Scholar 

  10. Sha J et al (2002) Silicon nanotubes. Adv Mater 14(17):1219–1221

    Article  CAS  Google Scholar 

  11. Chegel R, Hasani M (2020) Electronic and thermal properties of silicene nanoribbons: Third nearest neighbor tight binding approximation. Chem Phys Lett 761:138061

    Article  CAS  Google Scholar 

  12. Jahan N, Navid IA, Subrina S (2018)Thermal Conductivity of Silicene Nanoribbons: An Equilibrium Molecular Dynamics Study. In: (2018) IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE, New York

  13. Pan L et al (2012) Thermoelectric properties of armchair and zigzag silicene nanoribbons. Phys Chem Chem Phys 14(39):13588–13593

    Article  CAS  PubMed  Google Scholar 

  14. Sadeghi H, Sangtarash S, Lambert CJ (2015) Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci Rep 5:9514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Zhang G, Li B (2011) A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries. J Chem Phys 135(20):204705

    Article  PubMed  Google Scholar 

  16. Lee J et al (2016) Thermal Transport in Silicon Nanowires at High Temperature up to 700 K. Nano Lett 16(7):4133–4140

    Article  CAS  PubMed  Google Scholar 

  17. Li D et al (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936

    Article  CAS  Google Scholar 

  18. Weisse JM et al (2012) Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res Lett 7(1):554

    Article  PubMed  PubMed Central  Google Scholar 

  19. Durgun E, Tongay S, Ciraci S (2005) Silicon and III-V compound nanotubes: Structural and electronic properties. Phys Rev B 72(7):075420

    Article  Google Scholar 

  20. Yang X, Ni J (2005) Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Phys Rev B 72(19):195426

    Article  Google Scholar 

  21. Tong J, Zhang M, Lei Y (2020) Effect of dimension parameters on the optical properties of a single silicon nanotube. Optik 204:164164

    Article  CAS  Google Scholar 

  22. Chegel R, Behzad S (2013) Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach. Superlattices Microstruct 63:79–90

    Article  CAS  Google Scholar 

  23. Guzmán-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76(7):075131

    Article  Google Scholar 

  24. Tang YH et al (2005)Self-assembled silicon nanotubes under supercritically hydrothermal conditions. Phys Rev Lett 95(11):116102

    Article  CAS  PubMed  Google Scholar 

  25. Xie M et al (2008) Growth of p-type Si nanotubes by catalytic plasma treatments. Nanotechnology 19(36):365609

    Article  PubMed  Google Scholar 

  26. Epur R et al (2015) A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. J Mater Chem A 3(20):11117–11129

    Article  CAS  Google Scholar 

  27. Fagan SB et al (2000) Ab initio calculations for a hypothetical material: Silicon nanotubes. Phys Rev B 61(15):9994–9996

    Article  CAS  Google Scholar 

  28. Fagan SB et al (2001) Stability investigation and thermal behavior of a hypothetical silicon nanotube. J Mol Struct (Thoechem) 539(1):101–106

    Article  CAS  Google Scholar 

  29. Jeong H et al (2014) Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv Mater 26(21):3445–3450

    Article  CAS  PubMed  Google Scholar 

  30. Li K, Wang W, Cao D (2011) Novel chemical sensor for CO and NO: silicon nanotube. J Phys Chem C 115(24):12015–12022

    Article  CAS  Google Scholar 

  31. Kulish VV et al (2013) Enhanced Li adsorption and diffusion in single-walled silicon nanotubes: An ab initio study. Chemphyschem 14(6):1161–1167

    Article  CAS  PubMed  Google Scholar 

  32. He T et al (2008)First-principles study of Co-doped single-walled silicon nanotubes. Nanotechnology 19(20):205707

    Article  PubMed  Google Scholar 

  33. Singh AK et al (2003) Magnetism in transition-metal-doped silicon nanotubes. Phys Rev Lett 91(14):146802

    Article  PubMed  Google Scholar 

  34. Khalkhali M, Khoeini F, Rajabpour A (2019) Thermal transport in silicene nanotubes: Effects of length, grain boundary and strain. Int J Heat Mass Transf 134:503–510

    Article  CAS  Google Scholar 

  35. Lu P-X, Qu L-B, Cheng Q-H(2013) A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes. Chin Phys B 22(11):117101

    Article  Google Scholar 

  36. Chen J, Zhang G, Li B (2010) Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett 10(10):3978–3983

    Article  CAS  PubMed  Google Scholar 

  37. Yu X, Li H, Zhou J (2020) Phonon thermal conductivity reduction in silicene nanotubes with isotope substitution. RSC Adv 10(18):10752–10757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang T et al (2013) Significant reduction of thermal conductivity in silicon nanowire arrays. Nanotechnology 24(50):505718

    Article  PubMed  Google Scholar 

  39. Hochbaum AI et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167

    Article  CAS  PubMed  Google Scholar 

  40. Paul A, Luisier M, Klimeck G (2011) Shape and orientation effects on the ballistic phonon thermal properties of ultra-scaled Si nanowires. J Appl Phys 110(11):114309

    Article  Google Scholar 

  41. Markussen T, Jauho A-P, Brandbyge M (2008) Heat conductance is strongly anisotropic for pristine silicon nanowires. Nano Lett 8(11):3771–3775

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y et al (2007) Phonon spectrum and specific heat of silicon nanowires. J Appl Phys 102(10):104303

    Article  Google Scholar 

  43. Marchbanks C, Wu Z (2015) Reduction of heat capacity and phonon group velocity in silicon nanowires. J Appl Phys 117(8):084305

    Article  Google Scholar 

  44. Dubyk K et al (2020) Thermal properties study of silicon nanostructures by photoacoustic techniques. J Appl Phys 127(22):225101

    Article  Google Scholar 

  45. Joura AV, Demchenko DO, Freericks JK (2004) Thermal transport in the Falicov-Kimball model on a Bethe lattice. Phys Rev B 69(16):165105

    Article  Google Scholar 

  46. Bruus H, Flensberg K (2012)Many-body quantum theory in condensed matter physics: an introduction. Oxford Univ. Press, Oxford

    Google Scholar 

  47. Soler JM et al (2002) The SIESTA method forab initioorder-Nmaterials simulation. J Phys: Condens Matter 14(11):2745–2779

    CAS  Google Scholar 

  48. Wang C et al (2017) Band gap scaling laws in group IV nanotubes. Nanotechnology 28(11):115202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Chegel carried out the idea and performed the tight binding and DFT calculations with finding the hopping parameters. All authors wrote the original article.

Corresponding author

Correspondence to Raad Chegel.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Declarations

This manuscript is the authors’ original work and has not been published nor has it been submitted simultaneously elsewhere.

Conflict of Interest of Interests

There are no conflicts of interest.

Consent to Participate

The consent was obtained from individual or guardian participants.

Consent for Publication

That all authors have checked the manuscript and have agreed to the submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaiimanesh, Z., Chegel, R. & Ghobadi, N. Thermal Conductivity and Heat Capacity of Silicene Nanotube Compared to Silicene Nanoribbon. Silicon 14, 5617–5628 (2022). https://doi.org/10.1007/s12633-021-01324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01324-9

Keywords

Navigation