Skip to main content
Log in

Innovative Soluble Silicon Leaf Source Increase Gas Exchange, Grain Yield and Economic Viability in Common Bean

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

New soluble sources of silicon (Si) have arrived in the agribusiness. Some of them are being considered efficient by their used composition, improving absorption of this beneficial element, photosynthetic parameters, and yield. However, the economic feasibility of using this source must be considered. Thus, the present study aimed to evaluate the effect of the foliar application of increasing concentrations of Si on the physiological aspects grain yield in common bean and the economic viability of silicon application.

Methods

Randomized block design with seven Si concentrations: 0.00, 0.33, 0.66, 1.00, 1.33, 1.66 and 2.00 g L− 1. Solutions were applied via foliar spraying covering the whole treatment area. Solutions were provided in triplicates and three different days after sowing (40, 55, and 70 DAS). Si accumulation, gas exchange (stomatal conductance, transpiration, photosynthesis, and internal CO2 concentration), photochemical efficiency, productivity, and economic viability were evaluated.

Results and conclusions

Foliar applications of Si as sodium and potassium silicate stabilized with sorbitol were found to be efficient in providing Si for bean cultivation. The beneficial effect of Si application in the photosynthetic and yield parameters was observed in this study. However, when Si concentration is higher than 1.16 g L− 1 it is considered not economically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data is available upon request to the correspondence author.

References

  1. Verma KK, Singh P, Song XP et al (2020) Mitigating climate change for sugarcane improvement: Role of silicon in alleviating abiotic stresses. Sugar Tech :1–9. https://doi.org/10.1007/s12355-020-00831-0

  2. Cui Z, Zhang H, Chen X et al (2018) Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363–366. https://doi.org/10.1038/nature25785

    Article  CAS  PubMed  Google Scholar 

  3. Ganascini D, Laureth JCU, Mendes IS et al (2019) Analysis of the production chain of bean culture in Brazil. J Agric Sci 11. https://doi.org/10.5539/jas.v11n7p256

  4. Pereira de Souza Junior J, de Mello Prado R, Machado dos Santos Sarah M, Felisberto G (2019) Silicon mitigates boron deficiency and toxicity in cotton cultivated in nutrient solution. J Plant Nutr Soil Sci 182:805–814

    Article  CAS  Google Scholar 

  5. Souza Junior JP, de Mello Prado R, Soares MB et al (2020) Effect of different foliar silicon sources on cotton plants. J Soil Sci Plant Nutr :1–9. https://doi.org/10.1007/s42729-020-00345-4

  6. Souza Junior JP, Frazão JJ, de Morais TCB et al (2020) Foliar spraying of silicon associated with salicylic acid increases silicon absorption and peanut growth. Silicon :1–7. https://doi.org/10.1007/s12633-020-00517-y

  7. Flores RA, Arruda EM, de Souza Junior JP et al (2018) Nutrition and production of Helianthus annuus in a function of application of leaf silicon. J Plant Nutr 42:137–144. https://doi.org/10.1080/01904167.2018.1549678

    Article  CAS  Google Scholar 

  8. Peixoto M, de M, Flores, do Couto RA CA, et al (2020) Silicon application increases biomass yield in sunflower by improving the photosynthesizing leaf area. Silicon :1–6. https://doi.org/10.1007/s12633-020-00818-2

  9. Chen D, Wang S, Yin L, Deng X (2018) How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci 9:281. https://doi.org/10.3389/fpls.2018.00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oliveira KR, Souza Junior JP, Bennett SJ et al (2020) Exogenous silicon and salicylic acid applications improve tolerance to boron toxicity in field pea cultivars by intensifying antioxidant defence systems. Ecotoxicol Environ Saf 201:110778. https://doi.org/10.1016/j.ecoenv.2020.110778

    Article  CAS  PubMed  Google Scholar 

  11. Moraes DHM, Mesquita M, Magalhães Bueno A et al (2020) Combined effects of induced water deficit and foliar application of silicon on the gas exchange of tomatoes for processing. Agronomy 10:1715. https://doi.org/10.3390/agronomy10111715

    Article  CAS  Google Scholar 

  12. Raven JA (2001) Chap. 3 Silicon transport at the cell and tissue level. Stud Plant Sci 8:41–55. https://doi.org/10.1016/S0928-3420(01)80007-0

    Article  CAS  Google Scholar 

  13. Deshmukh R, Sonah H, Belanger R (2020) New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. J Exp Bot. https://doi.org/10.1093/jxb/eraa342

    Article  PubMed  Google Scholar 

  14. Barros TC, De Mello Prado R, Garcia Roque C et al (2018) Silicon and salicylic acid promote different responses in legume plants. J Plant Nutr 41:2116–2125. https://doi.org/10.1080/01904167.2018.1497177

    Article  CAS  Google Scholar 

  15. Barros TC, de Mello Prado R, Roque CG et al (2019) Silicon and salicylic acid in the physiology and yield of cotton. J Plant Nutr 42:458–465. https://doi.org/10.1080/01904167.2019.1567765

    Article  CAS  Google Scholar 

  16. Feng J, Shi Q, Wang X et al (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic (Amsterdam) 123:521–530. https://doi.org/10.1016/j.scienta.2009.10.013

    Article  CAS  Google Scholar 

  17. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  18. Soil-Survey-Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

  19. Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual of soil analysis methods, 3rd edn. Embrapa, Brasília

  20. Embrapa (1979) Manual de métodos de análise de solo, 1st edn. Serviço Nacional de Levantamento e Conservação de Solos, Rio de Janeiro

  21. Sousa DMG de, Lobato E (2004) Cerrado: Correction of soil and fertilization, 2nd ed. Planaltina

  22. ABNT (1998) NBR 14244: Equipamentos de irrigação mecanizada – Pivô central e lateral móvel providos de emissores fixos ou rotativos – Determinação da uniformidade de distribuição de água. Rio de Janeiro

  23. de Gonzaga ACO (2014) Feijão: o produtor pergunta, a Embrapa responde, 2 th. Embrapa, Brasília

    Google Scholar 

  24. Embrapa (2013) Catálogo de cultivares de feijão comum. Santo Antônio de Goiás

  25. Barbosa Filho MP, Cobucci T, Fageria NK, Mendes PN (2008) Determinação da necessidade de adubação nitrogenada de cobertura no feijoeiro irrigado com auxílio do clorofilômetro portátil. Cienc Rural 38:1843–1848. https://doi.org/10.1590/S0103-84782008000700007

    Article  CAS  Google Scholar 

  26. Alves BJR, Smith KA, Flores RA et al (2012) Selection of the most suitable sampling time for static chambers for the estimation of daily mean N 2O flux from soils. Soil Biol Biochem 46:129–135. https://doi.org/10.1016/j.soilbio.2011.11.022

    Article  CAS  Google Scholar 

  27. Souza HA, Natale W, Rozane DE et al (2011) Liming and fertilization with boron in production of bean. Rev Ciênc Agron 42:249–257

    Article  Google Scholar 

  28. Korndörfer GH, Pereira HS, Nolla A (2004) Análise de silício: solo, planta e fertilizante. UFU, Uberlândia

    Google Scholar 

  29. Silva FCda (2009) Manual of chemical analyzes of soils, plants and fertilizers, 2nd edn. Embrapa Informação Tecnológica, Brasília

    Google Scholar 

  30. Noronha JF (1987) Projetos agropecuários: administração financeira, orçamento e viabilidade econômica, 2nd edn. Atlas, São Paulo

  31. Agrolink (2020) Histórico de cotações. http://www.agrolink.com.br/cotacoes/historico/go/feijao-carioca-sc-60kg. Accessed 13 May 2020

  32. Saab AA, Paula R de A (2008) O mercado de fertilizantes no brasil diagnóstico e prognóstico. Rev Política Agrícola 17:5-24

  33. Barbosa JC, Maldonado Júnior W (2015) Experimentação agronômica & Agroestat - Sistema para análises de ensaios agronômicos, 1 th. Funep, Jaboticabal

    Google Scholar 

  34. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  35. Crusciol CAC, Soratto RP, Castro GSA et al (2013) Foliar application of stabilized silicic acid on soybean, common bean, and peanut. Rev Ciência Agronômica 44:404–410. https://doi.org/10.1590/S1806-66902013000200025

    Article  Google Scholar 

  36. Shwethakumari U, Prakash NB (2018) Effect of foliar application of silicic acid on soybean yield and seed quality under field conditions. J Indian Soc Soil Sci 66:406–414. https://doi.org/10.5958/0974-0228.2018.00051.8

    Article  Google Scholar 

  37. Mantovani C, Prado R de M, Pivetta KFL (2018) Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids. Sci Hortic (Amsterdam) 241:83–92. https://doi.org/10.1016/J.SCIENTA.2018.06.088

    Article  CAS  Google Scholar 

  38. Haynes RJ (2019) What effect does liming have on silicon availability in agricultural soils? Geoderma 337:375–383. https://doi.org/10.1016/j.geoderma.2018.09.026

    Article  CAS  Google Scholar 

  39. Kubicki JD, Heaney PJ (2003) Molecular orbital modeling of aqueous organosilicon complexes: implications for silica biomineralization. Geochim Cosmochim Acta 67:4113–4121. https://doi.org/10.1016/s0016-7037(03)00093-0

    Article  CAS  Google Scholar 

  40. D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275. https://doi.org/10.1080/17425247.2016.1182485

    Article  CAS  PubMed  Google Scholar 

  41. de Oliveira RLL, Prado R, de Felisberto M, Cruz G (2019) Different sources of silicon by foliar spraying on the growth and gas exchange in sorghum. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00092-1

    Article  Google Scholar 

  42. Will S, Eichert T, Fernández V et al (2011) Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex. Plant Soil 344:283–293. https://doi.org/10.1007/s11104-011-0746-6

    Article  CAS  Google Scholar 

  43. Prado R de M (2020) Nutrição de plantas [Plant nutrition], 1 th. Editora ENESP, São Paulo

    Google Scholar 

  44. Wu X, Yu Y, Baerson SR et al (2017) Interactions between Nitrogen and Silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Front Plant Sci 8:28. https://doi.org/10.3389/fpls.2017.00028

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shen X, Li J, Duan L et al (2009) Nutrient acquisition by soybean treated with and without silicon under ultraviolet-B radiation. J Plant Nutr 32:1731–1743. https://doi.org/10.1080/01904160903150966

    Article  CAS  Google Scholar 

  46. Deus ACF, Prado RM, Alvarez R, de CF et al (2020) Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon 12:997–1005. https://doi.org/10.1007/s12633-019-00195-5

    Article  CAS  Google Scholar 

  47. Silva ES, Prado RM, Soares A, de AVL et al (2021) Response of corn seedlings (Zea mays L.) to different concentrations of nitrogen in absence and presence of silicon. Silicon 13:813–818. https://doi.org/10.1007/s12633-020-00480-8

    Article  CAS  Google Scholar 

  48. Ahmed M, Qadeer U, Fayayz-ul-Hassan et al (2020) Abiotic stress tolerance in wheat and the role of silicon: An experimental evidence. In: Agronomic Crops. Springer Singapore, pp 443–479

  49. Aucique Perez CE, Rodrigues F, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with pyricularia oryzae. Phytopathology 104:143–149. https://doi.org/10.1094/PHYTO-06-13-0163-R

    Article  CAS  Google Scholar 

  50. Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  51. Feng J, Shi Q, hua, Wang X feng, (2009) Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agric Sci China 8:40–50. https://doi.org/10.1016/S1671-2927(09)60007-9

    Article  CAS  Google Scholar 

  52. Djanaguiraman M, Boyle DL, Welti R et al (2018) Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol 18:1–17. https://doi.org/10.1186/s12870-018-1263-z

    Article  CAS  Google Scholar 

  53. Silva AF, De VF, Sousa O et al (2018) Antioxidant protection of photosynthesis in two cashew progenies under salt stress. J Agric Sci 10. https://doi.org/10.5539/jas.v10n10p388

  54. Naiverth EL, Simonetti APMM (2015) Icidência de pragas e produtividade da cultura do feijão submetida a adubação foliar com silício. Rev Thêma Sci 5

  55. Abou-Baker N (2012) Silicon and water regime responses in bean production under soil saline condition. J Appl Sci Res 8:5698–5707

    Google Scholar 

  56. Carvalho MP, Zanão Júnior LA, Grossi JAS, Barbosa JG (2009) Silício melhora produção e qualidade do girassol ornamental em vaso. Cienc Rural 39:2394–2399. https://doi.org/10.1590/s0103-84782009005000194

    Article  CAS  Google Scholar 

  57. Flores RA, Arruda EM, Damin V et al (2018) Physiological quality and dry mass production of Sorgum bicolor following silicon (Si) foliar appliication. Aust J Crop Sci 12:63–638

    Article  Google Scholar 

  58. Deren CW, Datnoff LE, Snyder GH, Martin FG (1994) Silicon Cocentration, disease response, and yield components of rice genotypes grown on flooded organic histosols. Crop Sci 34:733–737. https://doi.org/10.2135/cropsci1994.0011183X003400030024x

    Article  Google Scholar 

  59. Chu M, Liu M, Ding Y et al (2018) Effect of nitrogen and silicon on rice submerged at tillering stage. Agron J 110:183–192. https://doi.org/10.2134/agronj2017.03.0156

    Article  CAS  Google Scholar 

  60. do Couto CA, Flores RA, Neto JC et al (2020) Crescimento, biomassa e qualidade fisiológica do arroz em função da aplicação foliarde silício / Growth, biomass and physiological quality of rice as a function of foliar application of silicon. Braz J Dev 6:18997–19014. https://doi.org/10.34117/BJDV6N4-170

    Article  Google Scholar 

  61. Kumar V, Kumar P, Khan A (2020) Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal Agric Biotechnol 23:101463. https://doi.org/10.1016/j.bcab.2019.101463

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding provided by the Coordination of Superior Level Staff Improvement (CAPES) and National Council for Science and Technology (CNPq). RAF would like to thank CNPq for the PQ funds process number 306329/2019-0.

Funding

This project was funded by the Coordination of Superior Level Staff Improvement (CAPES) and National Council for Science and Technology (CNPq) under the PQ funds process number 306329/2019-0 granted to RAF.

Author information

Authors and Affiliations

Authors

Contributions

AFA and AMB led the data analysis and led the writing with input of all co-authors. RAF, KOA and RMP designed the experiment and provided overall project leadership. AFA, AMB, ASC, MLL and JPSJ grew the plants, applied the treatments and collected data. AFA, AMB and JPSJ was responsible for the lab analysis. AFA and AMB collected photosynthesis data under supervision of RAF. RAF provided equipment for photosynthesis data collection. RAF and RMP provided all structure for the experiment.

Corresponding author

Correspondence to Jonas Pereira de Souza Junior.

Ethics declarations

Conflicts of Interest/Competing Interests

There is no conflict of interest. 

Ethics Approval

All experiments were conducted ethically and no issues regarding ethical issues arouse during the experiments or the manuscript confection.

Consent to Participate

All authors freely agreed and gave their consent to participate on the experiment.

Consent for Publication

All authors freely agreed and gave their consent for the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, A.F., Bueno, A.M., de Carvalho, A.d.S. et al. Innovative Soluble Silicon Leaf Source Increase Gas Exchange, Grain Yield and Economic Viability in Common Bean. Silicon 14, 3739–3747 (2022). https://doi.org/10.1007/s12633-021-01142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01142-z

Keywords

Navigation