Skip to main content
Log in

A New Simplified Method for Efficient Extraction of Solar Cells and Modules Parameters from Datasheet Information

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An accurate and straightforward estimation of solar cells and modules parameters from the manufacturer’s datasheet is essential for the performance assessment, simulation, design, and quality control. In this work, a simple and efficient technique is reported to extract the parameters of solar cells and modules, namely ideality factor (n), series resistance (Rs), shunt resistance (Rsh), photocurrent (Iph) and saturation current (Io), from datasheet information. The method is based on defining the peak position of the function f(n, Rsh) = n(Rsh _ max − Rsh), at which the five parameters are extracted. It was validated on four different technologies of solar cells and modules, including Poly-Si, Mono-Si, thin film and multijunction. Results showed that a simple and efficient extraction of the parameters can be realized by using this technique compared to that of the reported methods in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data and material are available within the manuscript.

References

  1. McEvoy AJ, Castaner L, Markvart T (2012) Solar cells: materials, manufacture and operation. Academic Press. Second Edition. USA

  2. Li Z-S, Zhang G-Q, Li D-M, Zhou J, Li L-J, Li L-X (2007) Application and development of solar energy in building industry and its prospects in China. Energy Policy 35(8):4121–4127

    Article  Google Scholar 

  3. Otte K, Makhova L, Braun A, Konovalov I (2006) Flexible cu (in, Ga) se 2 thin-film solar cells for space application. Thin Solid Films 511:613–622

    Article  Google Scholar 

  4. Maouhoub N (2018) Photovoltaic module parameter estimation using an analytical approach and least squares method. J Comput Electron 17:784–790. https://doi.org/10.1007/s10825-017-1121-5

    Article  Google Scholar 

  5. Chaibi Y, Allouhi A, Malvoni M, Salhi M, Saadani R (2019) Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models. Sol Energy 188:1102–1110

    Article  Google Scholar 

  6. Chen Z, Chen Y, Wu L, Cheng S, Lin P, You L (2019) Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics. Energy Convers Manag 186:168–187

    Article  Google Scholar 

  7. Zhang C, Zhang Y, Su J, Gu T, Yang M (2020) Performance prediction of PV modules based on artificial neural network and explicit analytical model. J Renewable Sustainable Energy 12(1):013501

    Article  Google Scholar 

  8. Müller B, Hardt L, Armbruster A, Kiefer K, Reise C (2016) Yield predictions for photovoltaic power plants: empirical validation, recent advances and remaining uncertainties. Prog Photovolt Res Appl 24(4):570–583

    Article  Google Scholar 

  9. Tajuddin M, Arif M, Ayob S, Salam Z (2015) Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review. Int J Energy Res 39(9):1153–1178

    Article  Google Scholar 

  10. Verma D, Nema S, Shandilya A, Dash SK (2016) Maximum power point tracking (MPPT) techniques: recapitulation in solar photovoltaic systems. Renew Sust Energ Rev 54:1018–1034

    Article  Google Scholar 

  11. Hu X, Zou Y, Yang Y (2016) Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy 111:971–980

    Article  Google Scholar 

  12. Neubauer C, Samieipour A, Oueslati S, Danilson M, Meissner D (2019) Ageing of kesterite solar cells 1: degradation processes and their influence on solar cell parameters. Thin Solid Films 669:595–599

    Article  CAS  Google Scholar 

  13. Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W (2018) Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy 3(1):61–67

    Article  CAS  Google Scholar 

  14. Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E (2017) Energy efficiency of PV panels under real outdoor conditions–an experimental assessment in Athens, Greece. Renew Energy 101:236–243

    Article  Google Scholar 

  15. Ahmad Z, Touati F, Muhammad FF, Najeeb MA, Shakoor RA (2017) Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells. Appl Physics A 123(7):486. https://doi.org/10.1007/s00339-017-1098-8

    Article  CAS  Google Scholar 

  16. Meneses-Rodrı́guez D, Horley PP, Gonzalez-Hernandez J, Vorobiev YV, Gorley PN (2005) Photovoltaic solar cells performance at elevated temperatures. Sol Energy 78(2):243–250

    Article  Google Scholar 

  17. Muhammad FF, Ketuly KA, Yahya MY (2017) Effect of thermal annealing on a ternary organic solar cell incorporating Gaq3 organometallic as a boosting acceptor. J Inorg Organomet Polym Mater 28:102–109. https://doi.org/10.1007/s10904-017-0734-2

    Article  CAS  Google Scholar 

  18. Anani N, Ibrahim H (2020) Adjusting the single-diode model parameters of a photovoltaic module with irradiance and temperature. Energies 13(12):3226

    Article  Google Scholar 

  19. El Achouby H, Zaimi M, Ibral A, Assaid E (2018) New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Convers Manag 177:258–271

    Article  Google Scholar 

  20. Ahmed DR, Mohammed IR, Abdullah HM, Muhammadsharif FF, Sulaiman K, Alsoufi MS, Bawazeer TM (2021) The correlation of device parameters with illumination energy to explore the performance of a Monocrystalline silicon solar module. Silicon. https://doi.org/10.1007/s12633-021-00966-z

  21. Muhammad FF, Karim Sangawi AW, Hashim S, Ghoshal S, Abdullah IK, Hameed SS (2019) Simple and efficient estimation of photovoltaic cells and modules parameters using approximation and correction technique. PLoS One 14(5):e0216201

    Article  PubMed  PubMed Central  Google Scholar 

  22. Muhammadsharif FF, Hashim S, Hameed SS, Ghoshal S, Abdullah IK, Macdonald J, Yahya MY (2019) Brent’s algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Sol Energy 193:782–798

    Article  Google Scholar 

  23. Abdulrazzaq AK, Bognár G, Plesz B (2020) Evaluation of different methods for solar cells/modules parameters extraction. Sol Energy 196:183–195

    Article  Google Scholar 

  24. Chenche LEP, Mendoza OSH, Bandarra Filho EP (2018) Comparison of four methods for parameter estimation of mono-and multi-junction photovoltaic devices using experimental data. Renew Sust Energ Rev 81:2823–2838

    Article  Google Scholar 

  25. Waly HM, Azazi HZ, Osheba DS, El-Sabbe AE (2019) Parameters extraction of photovoltaic sources based on experimental data. IET Renewable Power Generation 13(9):1466–1473

    Article  Google Scholar 

  26. Allouhi A, Saadani R, Buker M, Kousksou T, Jamil A, Rahmoune M (2019) Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Sol Energy 178:25–36

    Article  CAS  Google Scholar 

  27. Senturk A, Eke R (2017) A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values. Renew Energy 103:58–69. https://doi.org/10.1016/j.renene.2016.11.025

    Article  CAS  Google Scholar 

  28. Yıldıran N, Tacer E (2016) Identification of photovoltaic cell single diode discrete model parameters based on datasheet values. Sol Energy 127:175–183

    Article  Google Scholar 

  29. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, Ahmad Z (2017) Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions. PLoS One 12(8):e0182925

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orioli A, Di Gangi A (2016) A criterion for rating the usability and accuracy of the one-diode models for photovoltaic modules. Energies 9(6):427

    Article  Google Scholar 

  31. Cubas J, Pindado S, de Manuel C (2014) Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function. Energies 7(7):4098–4115

    Article  Google Scholar 

  32. Pindado S, Cubas J (2017) Simple mathematical approach to solar cell/panel behavior based on datasheet information. Renew Energy 103:729–738

    Article  Google Scholar 

  33. Gong W, Cai Z (2013) Parameter extraction of solar cell models using repaired adaptive differential evolution. Sol Energy 94:209–220

    Article  Google Scholar 

  34. Ishaque K, Salam Z (2011) An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol Energy 85(9):2349–2359

    Article  Google Scholar 

  35. Askarzadeh A, Rezazadeh A (2013) A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int J Energy Res 37(10):1196–1204

    Article  CAS  Google Scholar 

  36. Askarzadeh A, Rezazadeh A (2013) Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol Energy 90:123–133

    Article  Google Scholar 

  37. Askarzadeh A, dos Santos CL (2015) Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Convers Manag 89:608–614

    Article  Google Scholar 

  38. Jervase JA, Bourdoucen H (1925) Al-Lawati A (2001) Solar cell parameter extraction using genetic algorithms. Meas Sci Technol 12(11):1922

    Article  Google Scholar 

  39. Zagrouba M, Sellami A, Bouaïcha M, Ksouri M (2010) Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol Energy 84(5):860–866

    Article  CAS  Google Scholar 

  40. Oliva D, Cuevas E, Pajares G (2014) Parameter identification of solar cells using artificial bee colony optimization. Energy 72:93–102

    Article  Google Scholar 

  41. Ye M, Wang X, Xu Y (2009) Parameter extraction of solar cells using particle swarm optimization. J Appl Phys 105(9):094502

    Article  Google Scholar 

  42. Yeh W-C (2009) A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Syst Appl 36(5):9192–9200

    Article  Google Scholar 

  43. Yousri D, Rezk H, Fathy A (2020) Identifying the parameters of different configurations of photovoltaic models based on recent artificial ecosystem-based optimization approach. Int J Energy Res

  44. Zhang Y, Ma M, Jin Z (2020) Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems. Expert Syst Appl 160:113750

    Article  Google Scholar 

  45. Sera D, Teodorescu R, Rodriguez P (2007) PV panel model based on datasheet values. 2007 Vigo, Spain. IEEE international symposium on industrial electronics. IEEE, pp 2392–2396

  46. Villalva MG, Gazoli JR, Ruppert Filho E (2009) Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans Power Electron 24(5):1198–1208

    Article  Google Scholar 

  47. Chaibi Y, Allouhi A, Salhi M (2020) A simple iterative method to determine the electrical parameters of photovoltaic cell. J Cleaner Prod 269:122363

    Article  CAS  Google Scholar 

  48. Caprioglio P, Wolff CM, Sandberg OJ, Armin A, Rech B, Albrecht S, Neher D, Stolterfoht M (2020) On the origin of the ideality factor in Perovskite solar cells. Adv Energy Mater 10(27):2000502

    Article  CAS  Google Scholar 

  49. Calado P, Burkitt D, Yao J, Troughton J, Watson TM, Carnie MJ, Telford AM, O’Regan BC, Nelson J, Barnes PRF (2019) Identifying dominant recombination mechanisms in Perovskite solar cells by measuring the transient ideality factor. Phys Rev Appl 11(4):044005. https://doi.org/10.1103/PhysRevApplied.11.044005

    Article  CAS  Google Scholar 

  50. Courtier N (2020) Interpreting ideality factors for planar perovskite solar cells: ectypal diode theory for steady-state operation. Physical Rev Appl 14(2):024031

    Article  CAS  Google Scholar 

  51. Andra VK, Rahman M (2020) Empirical Estimation and Analysis of the Dark Ideality factor ‘n’of single c-Si and c-GaAs Solar cells at Different Sun Irradiation. 2020 47th IEEE photovoltaic specialists conference (PVSC). Calgary, AB, Canada. IEEE, pp 1602–1605

  52. Thongprong N, Supasai T, Li Y, Tang I-M, Rujisamphan N (2020) Insights into recombination processes from light intensity–dependent open-circuit voltages and ideality factors in planar Perovskite solar cells. Energy Technol 8(5):1901196

    Article  CAS  Google Scholar 

  53. Hassan MM, Iskander NN, Abdellatif SO, Kirah KA, Ghali HA (2020) Investigating parasitic resistance of mesoporous-based solar cells with respect to thin-film and conventional solar cells. Organic, Hybrid, and Perovskite Photovoltaics XXI. California, United States. International Society for Optics and Photonics, p 1147424

  54. Gayen RN, Chakrabarti T (2019) Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration. Mater Sci Semicond Process 100:1–7. https://doi.org/10.1016/j.mssp.2019.04.018

    Article  CAS  Google Scholar 

  55. Miranda E, Milano G, Ricciardi C (2020) Compact modeling of the IV characteristics of ZnO nanowires including nonlinear series resistance effects. IEEE Trans Nanotechnol 19:297–300

    Article  CAS  Google Scholar 

  56. Lineykin S, Averbukh M, Kuperman A (2014) An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renew Sust Energ Rev 30:282–289

    Article  Google Scholar 

  57. Zhang C, Zhang J, Hao Y, Lin Z, Zhu C (2011) A simple and efficient solar cell parameter extraction method from a single current-voltage curve. J Appl Phys 110(6):064504

    Article  Google Scholar 

  58. Tong NT, Pora W (2016) A parameter extraction technique exploiting intrinsic properties of solar cells. Appl Energy 176:104–115

    Article  Google Scholar 

  59. da Luz CMA, Tofoli FL, dos Santos VP, Vicente EM (2018) Assessment of the ideality factor on the performance of photovoltaic modules. Energy Convers Manag 167:63–69

    Article  Google Scholar 

  60. Yordanov GH, Midtgård O-M, Saetre TO (2013) Ideality factor behavior between the maximum power point and open circuit. 2013 IEEE 39th photovoltaic specialists conference (PVSC). Tampa, FL, USA. IEEE, pp 0729–0733

  61. Ulapane NN, Dhanapala CH, Wickramasinghe SM, Abeyratne SG, Rathnayake N, Binduhewa PJ (2011) Extraction of parameters for simulating photovoltaic panels. 2011 6th International Conference on Industrial and Information Systems. IEEE, pp 539–544

  62. Shinong W, Qianlong M, Jie X, Yuan G, Shilin L (2020) An improved mathematical model of photovoltaic cells based on datasheet information. Sol Energy (UK). 199:437–446

  63. Cuce E, Cuce PM, Karakas IH, Bali T (2017) An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters. Energy Convers Manag 146:205–216

    Article  Google Scholar 

  64. Gulkowski S, Diez JVM, Tejero JA, Nofuentes G (2019) Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions. Energy 172:380–390

    Article  Google Scholar 

  65. Chaibi Y, Malvoni M, Allouhi A, Mohamed S (2019) Data on the I–V characteristics related to the SM55 monocrystalline PV module at various solar irradiance and temperatures. Data in brief 26

    Book  Google Scholar 

  66. Zaimi M, El Achouby H, Ibral A, Assaid E (2019) Determining combined effects of solar radiation and panel junction temperature on all model-parameters to forecast peak power and photovoltaic yield of solar panel under non-standard conditions. Sol Energy 191:341–359

    Article  Google Scholar 

  67. CESI (2020) Thin Triple-Junction Solar Cell for Space Applications (CTJ30 – Thin). https://www.cesi.it/app/uploads/2020/03/Datasheet-CTJ30-Thin.pdf

    Google Scholar 

Download references

Acknowledgments

The author should like to thank Assoc. Prof. Dr. Yassine Chaibi at Moroccan School of Engineering Sciences for providing some datasets to validate this work.

Funding

This work did not receive a financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis and investigation, Writing - original draft preparation, Writing - review and editing: Fahmi F. Muhammadsharif. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Fahmi F. Muhammadsharif.

Ethics declarations

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The corresponding author transfers to Springer the non-exclusive publication rights and he warrants that the contribution is original and that he has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This transfer of publication rights covers the non-exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

Conflict of Interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammadsharif, F.F. A New Simplified Method for Efficient Extraction of Solar Cells and Modules Parameters from Datasheet Information. Silicon 14, 3059–3067 (2022). https://doi.org/10.1007/s12633-021-01097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01097-1

Keywords

Navigation