Skip to main content
Log in

Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The design and fabrication of PEDOT:PSS/n-Si cell have been widely studied in recent years, yet few studies have looked into the effect of Si substrate properties on device’s performance. In this study, the thinning treatment of silicon substrates based on simple and low-cost alkaline etching has been systematically investigated. It is found that the KOH etching could effectively remove the surface damage layer. The series resistance (Rs) of device can be adjusted by silicon wafer thickness, under the optimized etching condition, the power conversion efficiency (PCE) of resulting 338 μm-thick PEDOT:PSS/n-Si could reach up to 5.17%, which is 1.7-times increase by comparing that of 500 μm-thick PEDOT:PSS/n-Si (PCE:2.97%).Furthermore, KOH-isopropanol texturing was incorporated into thinning silicon wafer, the smoothing pyramid structures can further reduce light reflectance and improve the junction contact quality between PEDOT:PSS film and n-Si substrates, and the PCE of 5.49% was finally achieved. This study shows guide value for understanding the influence of substrate thickness and texturing treatment on the performance of PEDOT:PSS/n-Si solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert P, Mark K, Garnett EC, Bruno E, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352(6283)

  2. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E (2013) 24.7% record efficiency hit solar cell on thin silicon wafer. IEEE J Photovoltaics 4(1):96–99

    Article  Google Scholar 

  3. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environment 9(5):1552–1576

    Article  CAS  Google Scholar 

  4. Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y (2017) The light-induced field-effect solar cell concept–Perovskite nanoparticle coating introduces polarization enhancing silicon cell efficiency. Adv Mater 29(18):1606370.1–1606370.7

    Article  Google Scholar 

  5. Liu J, Ji Y, Liu Y, Xia Z, Han Y, Li Y, Sun B (2017) Doping-free asymmetrical silicon Heterocontact achieved by integrating conjugated molecules for high efficient solar cell. Adv Energy Mater 1700311:1–7

  6. Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML (2012) Hybrid silicon Nanocone–polymer solar cells. Nano Lett 12(6):2971–2976

    Article  CAS  PubMed  Google Scholar 

  7. Chen TG, Huang BY, Chen EC, Yu P, Meng HF (2012) Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency. Appl Phys Lett 101(3):718

    Article  Google Scholar 

  8. Zhang F, Liu D, Zhang Y, Wei H, Song T, Sun B (2013) Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell. ACS Appl Mater Interfaces 5(11):4678–4684

    Article  CAS  PubMed  Google Scholar 

  9. Chen JY, Sun KW (2013) Efficiency enhancement of PEDOT:PSS/Si hybrid solar cells by using nanostructured radial junction and antireflective surface. ACS Appl Mater Interfaces 5(15):7552–7558

    Article  CAS  PubMed  Google Scholar 

  10. Chen JY, Yu MH, Chang SF,Sun W, K (2013) Highly efficient poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structure. Appl Phys Lett 103(13):5762

  11. Chao JJ, Shiu SC, Hung SC, Lin CF (2010) GaAs nanowire /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells. Nanotechnology 21(28):285203

    Article  PubMed  Google Scholar 

  12. Liu Q, Tatsuya O, Liu D, Hiromitsu S, Ryo I, Keiji U (2015) Efficient organic/polycrystalline silicon hybrid solar cells. Nano Energy 11:260–266

    Article  CAS  Google Scholar 

  13. Ge HT, Yuan S, Li ZZ, Liu QW, Liao LS (2019) Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells. Org Electron 75:105423–105423

    Article  CAS  Google Scholar 

  14. Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N (2017) Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy 33:436–444

    Article  CAS  Google Scholar 

  15. Singh P, Srivastava SK, Sivaiah B, Prathap P, Rauthan CMS (2018) Enhanced photovoltaic performance of PEDOT: PSS/Si solar cells using hierarchical light trapping scheme. Sol Energy 170:221–233

    Article  CAS  Google Scholar 

  16. He J, Yang Z, Liu P, Wu S, Gao P, Wang M (2016) Enhanced electro-optical properties of Nanocone/Nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications. Adv Energy Mater 6(8):1–8

    Google Scholar 

  17. Liu R, Lee ST, Sun B (2014) 13.8% efficiency hybrid Si/organic Heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv Mater 26(34):6007–6012

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhang Z, Xia Z, Zhang J, Liu Y, Liang F, Li Y, Song T, Yu X (2016) High performance nanostructured silicon-organic quasi p-n junction solar cells via low-temperature deposited hole and Electron selective layer. ACS Nano 10(1):704–712

    Article  CAS  PubMed  Google Scholar 

  19. Chang Y, Pollard ME, Payne DNR, Sprafke A, Pillai S, Bagnall DM (2019) Large-area Nanosphere gratings for light trapping and reduced surface losses in thin solar cells. IEEE J Photovoltaics 9(4):1012–1019

    Article  Google Scholar 

  20. Omer AAA, Yang Y, Sheng G, Li S, Yu J, Ma W, Qiu J, Kolaly WE (2019) Nano-texturing of silicon wafers via one-step copper-assisted chemical etching. Silicon 12:231–238

    Article  Google Scholar 

  21. Huang Z, Geyer N, Werner P, Boor JD, Goesele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23(2):285–308

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Ohki T, Liu D, Sugawara H, Ishikawa R, Ueno K (2015) Efficient organic/polycrystalline silicon hybrid solar cells. Nano Energy 11:260–266

    Article  CAS  Google Scholar 

  23. Gao P, Yang Z, He J, Yu J, Liu P, Zhu J (2018) Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv Sci 5(3):1700547

    Article  Google Scholar 

  24. Park KT, Kim HJ, Park MJ, Jeong JH, Lee J, Choi DG, Lee JH, Choi JH (2015) 13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted au mesh electrode. Scientific Reports 5:12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu D, Zhang Y, Fang X, Zhang F, Song T, Sun B (2013) An 11%-power-conversion-efficiency organic–inorganic hybrid solar cell achieved by facile organic passivation. IEEE Electron Device Lett 34(3):345–347

    Article  CAS  Google Scholar 

  26. Wenham S (1993) Buried-contact silicon solar cells. Prog Photovolt Res Appl 1(1):3–10

    Article  CAS  Google Scholar 

  27. Xu Q, Song T, Cui W, Liu Y, Xu W, Shuit-Tong L, Sun B (2015) Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells. ACS Appl Mater Interfaces 7(5):3272–3279

    Article  CAS  PubMed  Google Scholar 

  28. Dong HS, Ju HK, Jung HK, Chan WJ, Sang WS, Ha SL, Sung K, Suk-Ho C (2017) Graphene/porous silicon schottky-junction solar cells. J Alloys Compd 715:291–296

    Article  Google Scholar 

  29. Li S, Ma W, Chen X, Xie K, Li Y, He X, Yang X, Lei Y (2016) Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci 369:232–240

    Article  CAS  Google Scholar 

  30. Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15):155606

    Article  PubMed  Google Scholar 

  31. Geng X, Li M, Zhao L, Bohn PW (2011) Metal-assisted chemical etching using tollen's reagent to deposit silver nanoparticle catalysts for fabrication of quasi-ordered silicon micro/nanostructures. J Electron Mater 40(12):2480–2485

    Article  CAS  Google Scholar 

  32. Shiu SC, Lin SB, Hung SC, Lin CF (2011) Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching. Appl Surf Sci 257(6):1829–1834

    Article  CAS  Google Scholar 

  33. Li R, Li M, Li Y, Fu P, Luo Y, Huang R (2015) Co-catalytic mechanism of au and Ag in silicon etching to fabricate novel nanostructures. RSC Adv 5:96483–96487

    Article  CAS  Google Scholar 

  34. Ding R, Dai H, Li M, Huang J (2014) The application of localized surface plasmons resonance in Ag nanoparticles assisted Si chemical etching. Appl Phys Lett 104(1):824

    Article  Google Scholar 

  35. Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X, Yang J, Lei Y, Chen Z (2018) Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation. J Mater Sci Technol 34(11):2197–2204

    Article  Google Scholar 

  36. Wang XX, Liu ZL, Yang ZH, He J, Yang X, Yu T, Gao P, Ye J (2018) Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon Nanopyramid arrays. Small 14(15):1–7

    Article  Google Scholar 

  37. Wu S, Cui W, Aghdassi N, Song T, Duhm S, Lee ST, Sun BQ (2016) Nanostructured Si/organic Heterojunction solar cells with high open-circuit voltage via improving junction quality. Adv Funct Mater 26(28):5035–5041

    Article  CAS  Google Scholar 

  38. He J, Gao PQ, Ling ZH, Ding L, Yang ZH, Ye JC, Cui Y (2016) High-efficiency silicon/organic Heterojunction solar cells with improved junction quality and Interface Passivation.ACS. Nano 10(12):11525–11531

    CAS  Google Scholar 

  39. Liu X, Li X, Li Y, Song C, Fang J (2016) High-performance polymer solar cells with PCE of 10.42% via Al-doped ZnO cathode interlayer. Adv Mater 28(34):7405–7412

    Article  CAS  PubMed  Google Scholar 

  40. Yoon SS, Khang DY (2018) High efficiency (>17%) si-organic hybrid solar cells by simultaneous structural, electrical, and interfacial engineering via low-temperature processes. Adv Energy Mater 8(9):1702655.1–1702655.8

    Article  Google Scholar 

  41. Kern W (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. Rca Rev 31(2):51–69

    Google Scholar 

  42. Rehman MA, Akhtar I, Choi W, Akbar K, Farooq A, Hussain S, Shehzad MA, Chun SH, Jung J, Seo Y Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell. Carbon 132:157–164

  43. Song Y, Li X, Mackin C, Zhang X, Fang W, Tomás P, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano Lett 15(3):2104–2110

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Weil BD, Li Y, Wang KX, Garnett E, Fan S (2013) Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett 13(9):4393–4398

    Article  CAS  PubMed  Google Scholar 

  45. Van Sark WGJHM, Korte L, Roca F (2012) In: Angermann H (ed) Physics and technology of amorphous-crystalline heterostructure silicon solar cell. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  46. Zhang J, Zhang Y, Song T, Shen X, Yu X, Lee ST, Sun B, Jia B (2017) High performance ultrathin organic-inorganic hybrid silicon solar cells via solution-processed Interface modification. ACS Appl Mater Interfaces 9(26):21723–21729

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Material

The authors declare that the data and materials for this work are available.

Code Availability

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51974143, 51904134, 61764009, 51762043); National Key R&D Program of China (No.2018YFC1901801, No.2018YFC1901805); Major Science and Technology Projects in Yunnan Province (No.2019ZE007); Key Project of Yunnan Province Natural Science Fund (No.2018FA027); Yunnan Ten Thousand Talents Project (YNWR-QNBJ-2018-111) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Li:Data curation, Writing - original draft. Zudong He: Conceptualization. Qidi Wang: Software. Jiasen Liu: Software. Shaoyuan Li: Funding acquisition, Supervision, Writing -review & editing. Xiuhua Chen: Funding acquisition, Visualization, Investigation. Wenhui Ma: Funding acquisition, Supervision. Y. Chang: Writing - review & editing.

Corresponding author

Correspondence to Shaoyuan Li.

Ethics declarations

Ethics Approval

The authors declare that the manuscript is not currently being considered for publication in another journal.

Consent to Participate

I testify on behalf of all co-authors that our article submitted to Silicon.

Consent for Publication

The authors agree that the manuscript should be published in Silicon.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• KOH etching technology is used to realize the thinning of silicon wafer.

• Random pyramid antireflection structures reducing the cell reflectance.

• The PCE of PEDOT:PSS n-Si solar cells could reach up to 5.49%.

• The series resistance (Rs) of device can be adjusted by silicon wafer thickness.

• Removing the surface damage layer and the smoothing pyramid structure textured is beneficial to the contact quality of the junction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, Z., Wang, Q. et al. Performance Improvement of PEDOT:PSS/N-Si Heterojunction Solar Cells by Alkaline Etching. Silicon 14, 2299–2307 (2022). https://doi.org/10.1007/s12633-021-01034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01034-2

Keywords

Navigation