Skip to main content
Log in

Role of Process Parameters on Microstructural and Electronic Properties of Rapid Thermally Grown MoS2 Thin Films on Silicon Substrates

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Miniaturization of the semiconducting materials propelled the discovery of low dimensional transition metal dichalcogenides (TMDC) thin films. In this work, MoS2 thin films have been grown by adopting rapid thermal processing (RTP) technique using hydrogen as a reducing gas. The effect of growth time and temperature on the morphological, microstructural and electronic properties of MoS2 thin film has been systematically investigated. Field emission scanning electron microscope (FESEM) images have shown the modulation of film morphology with both processing temperature and its duration. The intensity of (002) peak is found to be increased with RTP time and temperature. The improvement of crystallinity of MoS2 films with the increase in time and temperature has also been revealed from the decrease in the FWHM values of characteristic Raman peaks, which appeared around 389 cm−1 and 408 cm−1. The film quality is found to be deteriorated for the higher growth temperature. The carrier concentration of the MoS2 films is calculated by Mott-Schottky method, for MoS2/Si heterojunction. The carrier concentration, ideality factor and built-in potential are found to be 3.85 × 1015 cm−3, 1.45 and 0.46 V, respectively for MoS2 films grown at 800 °C for 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Mayorov AS, Gorbachev RV, Morozov SV (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11:2396–2399

    CAS  PubMed  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    CAS  PubMed  Google Scholar 

  3. Krishnan MA, Aneja KS, Shaikh A, Bohm S, Sarkar K, Bohm HLM, Raja VS (2018) Graphene-based anticorrosive coatings for copper. RSC Adv 8:499–507

    CAS  Google Scholar 

  4. Li HM, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo WJ (2015) Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun 6:1–9

    Google Scholar 

  5. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    CAS  PubMed  Google Scholar 

  6. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(136805):1–5

    Google Scholar 

  7. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    CAS  PubMed  Google Scholar 

  8. Ayari A, Cobas E, Ogundadegbe O, Fuhrer MS (2007) Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J Appl Phys 101:1–5

    Google Scholar 

  9. Hao L, Liu Y, Gao W, Han Z, Xue Q, Zeng H, Wu Z, Zhu J, Zhang W (2015) Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J Appl Phys 117:114502. https://doi.org/10.1063/1.4915951

    Article  CAS  Google Scholar 

  10. Zhang Y, Yu Y, Mi L, Wang H, Zhu Z, Wu Q, Zhang Y, Jiang Y (2016) In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 12:1062–1071

    CAS  PubMed  Google Scholar 

  11. Wang W, Panin GN, Fu X, Zhang L, Ilanchezhiyan P, Pelenovich VO, Fu D, Kang TW (2016) MoS2 memristor with photoresistive switching. Sci Rep 6:1–11

    Google Scholar 

  12. Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee ST (2015) MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater 25:2910–2919

    CAS  Google Scholar 

  13. Pezeshki A, Shokouh SHH, Nazari T, Oh K, Im S (2016) Electric and photovoltaic behavior of a few-layer α-MoTe2/ MoS2 dichalcogenide heterojunction. Adv Mater 28:3216–3222

    CAS  PubMed  Google Scholar 

  14. Yin Z, Zhang X, Cai Y et al (2014) Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. Angew Chemie - Int Ed 53:12560–12565

    CAS  Google Scholar 

  15. Kang J, Liu W, Banerjee K (2014) High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl Phys Lett 104:2–7

    Google Scholar 

  16. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    CAS  PubMed  Google Scholar 

  17. Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8:2264–2270

    CAS  PubMed  Google Scholar 

  18. Kalantar-Zadeh K, Ou JZ (2016) Biosensors based on two-dimensional MoS2. ACS Sensors 1:5–16

    CAS  Google Scholar 

  19. Cheng P, Sun K, Hu YH (2016) Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett 16:572–576

    CAS  PubMed  Google Scholar 

  20. Esmaeili-Rad MR, Salahuddin S (2013) High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci Rep 3:2–7

    Google Scholar 

  21. Furchi MM, Pospischil A, Libisch F, Burgdörfer J, Mueller T (2014) Photovoltaic effect in an electrically tunable Van der Waals heterojunction. Nano Lett 14:4785–4791

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fantanas D, Brunton A, Henley SJ, Dorey R (2018) Investigation of the mechanism for current induced network failure for spray deposited silver nanowires. Nanotechnology 29:465705

    CAS  PubMed  Google Scholar 

  23. Lu Z, Xu Y, Yu Y, Xu K, Mao J, Xu G, Ma Y, Wu D, Jie J (2020) Ultrahigh speed and broadband few-layer MoTe2/Si 2D–3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv Funct Mater 1907951:1–9

    Google Scholar 

  24. Lan C, Li C, Wang S, He T, Jiao T, Wei D, Jing W, Li L, Liu Y (2016) Zener tunneling and photoresponse of a WS2/Si van der Waals heterojunction. ACS Appl Mater Interfaces 8:18375–18382

    CAS  PubMed  Google Scholar 

  25. Deng J, Guo Z, Zhang Y, Cao X, Zhang S, Sheng Y, Xu H, Bao W, Wan J (2019) MoS2/silicon-on-insulator heterojunction photodetection. IEEE Electron Device Letters 40:423–426

  26. Xu Y, Chen CJ, Xu R, MacKenzie JD (1990) The self-biased heterojunction effect of ferroelectric thin film on silicon substrate. J Appl Phys 67:2985–2991

    CAS  Google Scholar 

  27. Ghonge SG, Goo E, Ramesh R, Haakenaasen R, Fork DK (1994) Microstructure of epitaxial oxide thin film heterostructures on silicon by pulsed laser deposition. Appl Phys Lett 64:3407–3409

    CAS  Google Scholar 

  28. Choi J, Das SN, Moon K, Kar JP, Myoung J (2010) Solid-state electronics fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode. Solid State Electron 54:1582–1585

    CAS  Google Scholar 

  29. Chirakkara S, Krupanidhi SB (2012) Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520:5894–5899

    CAS  Google Scholar 

  30. Ocak YS, Bozkaplan C, Ahmed HS, Tombak A, Genisel MF, Asubay S (2017) Temperature dependent electrical characterization of RF sputtered MoS2/n-Si heterojunction. Optik (Stuttg) 142:644–650

    CAS  Google Scholar 

  31. Mukherjee S, Biswas S, Das S, Ray SK (2017) Solution processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics. Nanotechnology 28:135203

    CAS  PubMed  Google Scholar 

  32. Desai P, Ranade AK, Mahyavanshi R, Tanemura M, Kalita G (2019) Influence of MoS2-silicon interface states on spectral photoresponse characteristics. Phys Status Solidi Appl Mater Sci 216:1–7

    Google Scholar 

  33. Regmi M, Chisholm MF, Eres G (2012) The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu. Carbon N Y 50:134–141

    CAS  Google Scholar 

  34. Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C (2015) Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9:6119–6127

    CAS  PubMed  Google Scholar 

  35. Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    CAS  PubMed  Google Scholar 

  36. Laskar MR, Wu Y, Sung Park P, Krishnamoorthy S, Kannappan S (2013) Large area single crystal (0001) oriented MoS2. Appl Phys Lett 102:252108

    Google Scholar 

  37. Liu HF, Wong SL, Chi DZ (2015) CVD growth of MoS2-based two-dimensional materials. Chem Vap Depos 21:241–259

    CAS  Google Scholar 

  38. Lee YH, Zhang XQ, Zhang W (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325

    CAS  PubMed  Google Scholar 

  39. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large area vapor phase growth and characterization of MoS2 atomic layers on SiO2 substrate. Small 8:966–971

    CAS  PubMed  Google Scholar 

  40. Liu K-K, Chang C-S, Zhang W (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12:1538–1544

    CAS  PubMed  Google Scholar 

  41. Lin Y-C, Zhang W, Huang J-K, Liu K-K, Lee Y-H, Liang C-T, Chu C-W, Li L-J (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–6641

    CAS  PubMed  Google Scholar 

  42. Liu H, Antwi KKA, Chua S, Chi D (2014) Vapor-phase growth and characterization of Mo1-xW xS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 6:624–629

    CAS  PubMed  Google Scholar 

  43. Li D, Xiao Z, Mu S (2018) A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals. Nano Lett 18:2021–2032

    CAS  PubMed  Google Scholar 

  44. Tode M, Takigawa Y, Iguchi T, Matsuura H, Ohmukai M, Sasaki W (2007) Removal of carbon contamination on Si wafers with an excimer lamp. Metall Mater Trans A Phys Metall Mater Sci 38:596–598

    Google Scholar 

  45. Liu Y, Zhao Y, Jiao L, Chen J (2014) A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries. J Mater Chem A 2:13109–13115

    CAS  Google Scholar 

  46. Park J, Choi JW, Kim W (2019) Improvement of perovskite crystallinity by omnidirectional heat transfer via radiative thermal annealing. RSC Adv 9:14868–14875

    CAS  Google Scholar 

  47. Malm J, Sahramo E, Perälä J, Sajavaara T, Karppinen M (2011) Low-temperature atomic layer deposition of ZnO thin films: control of crystallinity and orientation. Thin Solid Films 519:5319–5322

    CAS  Google Scholar 

  48. Zhu C, Li J, Yang Y, Huang J, Lu Y, Tan R, Dai N, Song W (2015) Zn-aided defect control for ultrathin GZO films with high carrier concentration aiming at alternative plasmonic metamaterials. Phys Status Solidi Appl Mater Sci 212:1713–1718

    CAS  Google Scholar 

  49. Liu H, Iskander A, Yakovlev NL, Chi D (2015) Anomalous SiO2 layer formed on crystalline MoS2 films grown on Si by thermal vapor sulfurization of molybdenum at elevated temperatures. Mater Lett 160:491–495

    CAS  Google Scholar 

  50. Zhou KG, Withers F, Cao Y, Hu S, Yu G, Casiraghi C (2014) Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. ACS Nano 8:9914–9924

    CAS  PubMed  Google Scholar 

  51. Padma R, Lee G, Kang JS, Jun SC (2019) Structural, chemical, and electrical parameters of Au/MoS2/n-GaAs metal/2D/3D hybrid heterojunction. J Colloid Interface Sci 550:48–56

    CAS  PubMed  Google Scholar 

  52. Lin YF, Li W, Li SL, Xu Y, Aparecido-Ferreira A, Komatsu K, Sun H, Nakaharai S, Tsukagoshi K (2014) Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale 6:795–799

    CAS  PubMed  Google Scholar 

  53. Du W, Baba M, Toko K, Hara KO, Watanabe K, Sekiguchi T, Usami N, Suemasu T (2014) Analysis of the electrical properties of Cr/n-BaSi2 Schottky junction and n-BaSi2/p-Si heterojunction diodes for solar cell applications. J Appl Phys 115:223701. https://doi.org/10.1063/1.4882117

    Article  CAS  Google Scholar 

  54. Liu Y, Yu YX, De Zhang W (2013) MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J Phys Chem C 117:12949–12957

    CAS  Google Scholar 

  55. Shimizu J, Ohashi T, Matsuura K, Muneta I, Kuniyuki K, Tsutsui K, Ikarashi N, Wakabayashi H (2019) Lowerature MoS2 film formation using sputtering and H2S annealing. IEEE J Electron Devices Soc 7:76–81

    Google Scholar 

  56. Pradhan D, Ghosh SP, Gartia A, Sahoo KK, Bose G, Kar JP (2020) Modulation of microstructural and electrical properties of rapid thermally synthesized MoS2 thin films by the flow of H2 gas. Superlattice Microst 145:106598

    CAS  Google Scholar 

  57. Matsuura K, Ohashi T, Muneta I, Ishihara S, Kakushima K, Tsutsui K, Ogura A, Wakabayashi H (2018) Low-carrier-density sputtered MoS2 film by vapor-phase sulfurization. J Electron Mater 47:3497–3501

    CAS  Google Scholar 

  58. Ruske F, Roczen M, Lee K, Wimmer M, Gall S, Hüpkes J, Hrunski D, Rech B (2010) Improved electrical transport in Al-doped zinc oxide by thermal treatment. J Appl Phys 107:013708. https://doi.org/10.1063/1.3269721

    Article  CAS  Google Scholar 

  59. Siao MD, Shen WC, Chen RS, Chang ZW, Shih MC, Chiu YP, Cheng CM (2018) Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat Commun 9:1442. https://doi.org/10.1038/s41467-018-03824-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie Y, Liang F, Chi S, Wang D, Zhong K, Yu H, Zhang H, Chen Y, Wang J (2020) Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl Mater Interfaces 12:7351–7357

    CAS  PubMed  Google Scholar 

  61. Baboux F, Ge L, Jacqmin T (2016) Bosonic condensation and disorder-induced localization in a flat band. Phys Rev Lett 116:1–6

    Google Scholar 

  62. Zhang Y, Yu W, Zhai X, Liu Z, Su L, Teng X, Fu G (2019) The effect of oxygen pretreatment at hetero-interface on the photovoltaic properties of MoS2/Si heterojunction solar cells. J Alloys Compd 803:1023–1031

    CAS  Google Scholar 

  63. Abouelkhair HM, Orlovskaya NA, Peale RE (2017) Growth of MoS2 thin films with microdome texture as omnidirectional light trap for solar cell applications. 2017 IEEE 44th Photovolt. Spec. Conf. (PVSC), pp 2324–2329

    Google Scholar 

  64. Rüther R, Livingstone J, Dytlewski N, Cohen D (1995) Bond switching, Si-H cluster formation and hydrogen effusion upon thermal annealing in hydrogenated amorphous silicon thin films. Thin Solid Films 271:151–156

    Google Scholar 

  65. Sharma A, Verheijen MA, Wu L, Karwal S, Vandalon V, Knoops HCM, Sundaram RS, Hofmann JP, Kessels WMM, Bol AA (2018) Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: large area, thickness control and tuneable morphology. Nanoscale 10:8615–8627

    CAS  PubMed  Google Scholar 

  66. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    CAS  PubMed  Google Scholar 

  67. Li H, Wu H, Yuan S, Qian H (2016) Synthesis and characterization of vertically standing MoS2 nanosheets. Sci Rep 6:1–9

    Google Scholar 

  68. Li X, Cui F, Feng Q (2016) Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8:18956–18962

    CAS  PubMed  Google Scholar 

  69. Chen P, Xu W, Gao Y, Holdway P, Warner JH, Castell MR (2019) Thermal degradation of monolayer MoS2 on SrTiO3 supports. J Phys Chem C 123:3876–3885

    CAS  Google Scholar 

  70. Kim HJ, Kim D, Jung S, Bae MH, Yun YJ, Yi SN, Yu JS, Kim JH, Ha DH (2018) Changes in the Raman spectra of monolayer MoS2 upon thermal annealing. J Raman Spectrosc 49:1938–1944

    CAS  Google Scholar 

  71. Schmidt H, Wang S, Chu L (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909–1913

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Defence Research & Development Organisation (DRDO), India sponsored Extramural Research & Intellectual Property Rights (ERIP) project (ERIP/ERJ201701014/M/0 l/1748).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution for this manuscript.

Corresponding author

Correspondence to Jyoti P. Kar.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this manuscript.

Research Involving Human Participants and/or Animals

Neither human nor animal participation is involved in this research work.

Informed Consent

All the authors are informed about the submission and given their consent for publication of the manuscript.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, D., Kar, J.P. Role of Process Parameters on Microstructural and Electronic Properties of Rapid Thermally Grown MoS2 Thin Films on Silicon Substrates. Silicon 14, 1947–1957 (2022). https://doi.org/10.1007/s12633-021-00959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-00959-y

Keywords

Navigation