Skip to main content
Log in

Dry Sliding Wear Behaviour of AA7075 – Al2SiO5 Layered Nanoparticle Material at Different Temperature Condition

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

To evaluate AA7075 (aluminium alloy) and its nanocomposites reinforced with (SiO2 + Al2O3) Al2SiO5 layered nanoparticle as possible material for high temperature wear condition, materials were tested under different temperatures (313 K, 353 K, 393 K and 433 K) respectively. High temperature wear tests were carried out at a constant load of 24.5 N, sliding speed of 3.14 m/s and distance of 2000 m respectively. This enabled to understand the effect of reinforcement at high temperature and its wear mechanisms of AA7075 / nanocomposite materials. The worn surface topography was carefully inspected using field emission – scanning electron microscope, X-ray energy-dispersive spectroscopy and optical metallurgical microscope. At the testing temperature range of 433 K wear resistance of the nanocomposites is increased, compared to AA7075 matrix material. The friction coefficient of the matrix and nanocomposite materials are deliberated. Based on the worn surface analysis, high temperature condition wear mechanisms of the nanocomposites are adhesive wear, delamination wear and oxidation wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vijaya Kumar P, Madhusudhan Reddy G, Srinivasa Rao K (2015) Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment. Def Technol 11:362–369

    Google Scholar 

  2. Rometsch PA, Zhang Y, Knight S (2014). Trans Nonferrous Met Soc China 24:2003–2017

    CAS  Google Scholar 

  3. Yang X, Lin C, Jin X, Jiancheng D, Xue W (2019) Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25 °C –300 °C. Cer Int 45:12312–12318

    CAS  Google Scholar 

  4. Peng JF (2018). Wear 402–403:160–168

    Google Scholar 

  5. Harrison TJ, Crawford BR, Janardhana M, Clarka G (2011). Proce Eng 10:3117–3121

    CAS  Google Scholar 

  6. Ramesh CS, Keshavamurthy R, Channabasappa BH, Pramod S (2010). Tribol Int 43:C623–C634

    Google Scholar 

  7. Kumar S, Balasubramanian V (2008). Wear 264:1026–1034

    CAS  Google Scholar 

  8. Mandal A, Chakraborty M, Murty BS (2007) Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear 262:160–166

    CAS  Google Scholar 

  9. Yilmaz O, Buytoz S (2001) Abrasive wear of Al2O3-reinforced aluminium-based MMCs. Compos Sci Technol 61:2381–2392

    CAS  Google Scholar 

  10. Pradeep P, Kumar PSSR, Lawrence ID, Jayabal S (2017). Int J Civil Eng Technol 8:178–190

    Google Scholar 

  11. Atrian A, Majzoobi GH, Enayati MH, Bakhtiari H (2015). Advanc Powder Technol 26:73–82

    CAS  Google Scholar 

  12. Hernández Martínez SE, Cruz-Rivera JJ, Garay-Reyes CG, Elias-Alfaro CG, Martínez-Sánchez R, Hernández-Rivera JL (2015). Powder Technol 284:40–46

    Google Scholar 

  13. Siddesh Kumar NG, Suresh R, Shiva Shankar GS (2020). Comput Commun 19:61–73

    Google Scholar 

  14. Wang YQ, Li SJ (2011). Trans Nonferrous Met Soc China 21:1441–1448

    CAS  Google Scholar 

  15. Michael Rajan B, Ramabalan S, Dinaharan I, Vijay SJ (2014) Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch Civ Mech Eng 14:72–79

    Google Scholar 

  16. Mobasherpour I, Tofigh AA, Ebrahimi M (2013) Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Mater Chem Phy 138:535–541

    CAS  Google Scholar 

  17. Nemati N, Khosroshahi R, Emamy M, Zolriasatein (2011). Mater Des 32:3718–3729

    CAS  Google Scholar 

  18. Kumar PSSR, Sudhagar PE, Alexis SJ, Subramani M (2019). Trans Indian Inst Met 72:2449–2456

    Google Scholar 

  19. Kumar PSSR, Robinson Smart DS, John Alexis S (2018) IOP Conf. Ser Mater Sci Eng 346:1–7

    Google Scholar 

  20. Agbeleye AA, Esezobor DE, Balogun SA, Agunsoye JO, Solis J, Neville A (2020). J King Saud Uni Sci 32:21–28

    Google Scholar 

  21. Du J, Liu YH, Yu SR, Li WF (2004). Wear 257:930–940

    CAS  Google Scholar 

  22. Baradeswaran A, Elaya Perumal A (2014). Compos Part B 56:464–471

    CAS  Google Scholar 

  23. Ahmadi A, Toroghinej MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19

    CAS  Google Scholar 

  24. Uthayakumar M, Thirumalai Kumaran S, Adam Khan M, Skoczypiec S, Bizon W (2020). J Test Evaluat 48(4):3073–3086

    Google Scholar 

  25. Thirumalai Kumaran S, Ko TJ, Uthayakumar M, Adam Khan M, Muhammad I (2017). Mater Manuf Processes 32(13):1557–1564

    Google Scholar 

  26. Adam Khan M, Sundarrajan S, Duraiselvam M, Natarajan S, Senthil Kumar A (2017). Surface Eng 33(1):35–41

    Google Scholar 

  27. Deuis RL, Subramanian C, Yellup JM (1997) Dry sliding wear of aluminium composites—A review. Compos Sci Technol 57:415–435

    CAS  Google Scholar 

  28. Zhang Q, Wei S, Jie G, Qi M (2020) High-temperature dry sliding Wear behavior of Al–12Si–CuNiMg alloy and its Al2O3 fiber-reinforced composite. Met Mater Int. https://doi.org/10.1007/s12540-020-00654-4

  29. Raju RSS, Panigrahi MK, Ganguly RI, Rao GS (2019). Tribol Int 129:55–66

    Google Scholar 

  30. Rajaram G, Kumaran S, Rao TS (2010, 2010). Mater Sci Eng A 528(247–253)

  31. Tian W-S, Zhao Q-L, Zhao C-J, Qiu F, Jiang Q-C (2017) The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Mater 10:939

    Google Scholar 

  32. Zhu H, Jar C, Song J, Zhao J, Li J, Xie Z (2012) High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr+α-Al2O3)/Al. Tribol Int 48:78–86

    CAS  Google Scholar 

  33. Singh N, Haq MIU, Raina A, Anand A, Kumar V, Sharma SM (2018). Alexandria Eng J 57(3):1323–1330

    Google Scholar 

  34. Haq MIU, Anand A (2018) Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite. Silicon 10:1819–1829

    Google Scholar 

  35. Haq MIU, Anand A (2018). Mater Res Express 5(6):066544

    Google Scholar 

  36. Siddesh Kumar NG, Suresh R, Shiva Shankar GS (2020) High temperature wear behavior of Al2219/n-B4C/MoS2 hybrid metal matrix composites. Composite Commun 19:61–73

    Google Scholar 

  37. ASTM G99–17 (2017) Standard test method for Wear testing with a pin-on-disk apparatus. ASTM International, West Conshohocken. https://doi.org/10.1520/G0099-17

    Book  Google Scholar 

  38. ASTM E18–15 (2015) Standard test methods for Rockwell hardness of metallic materials. ASTM International, West Conshohocken. https://doi.org/10.1520/E0018-15

    Book  Google Scholar 

  39. Ramkumar KR, Sivasankaran S, Al-Mufadi FA, Siddharth S, Raghu R (2019). Arch Civil Mech Eng 19:428–438

    Google Scholar 

  40. Jagannatham M, Senthil Saravanan MS, Sivaprasad K (2018). J Mater Eng Perform 27:5675–5688

    CAS  Google Scholar 

  41. Agbeleye AA, Esezobor DE, Agunsoye JO, Baloguna SA, Sosimib AA (2018). J Taibah Uni Sci 12:235–240

    Google Scholar 

  42. Zuo M, Sokoluk M, Cao C, Yuan J, Zheng S, Li X (2019). Nano-Treating Sci Rep 9:1–11

    Google Scholar 

  43. Shivamurthya RC, Surappa MK (2011) Tribological characteristics of A356 Al alloy–SiCP composite discs. Wear 271:1946–1950

    Google Scholar 

  44. Pauschitz A, Roy M, Franek F (2008) Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribol Int 41:584–602

    CAS  Google Scholar 

  45. Manohara HR, Chandrashekharaiah TM, Venkateswarlu K, Kori SA (2013) Sliding wear performance of reinforced A413 alloy at elevated temperatures. Int J Adv Manuf Technol 65:395–402

    Google Scholar 

  46. Kamalpreet K, Pandey OP (2013). J Mater Eng Perform 22:3101–3110

    Google Scholar 

  47. Okonkwo PC, Kelly G, Rolfe BF, Pereira MP (2012). Wear 282:22–30

    Google Scholar 

  48. Hamid AA, Ghosh PK, Jain SC, Ray S (2008). Wear 165:14–26

    Google Scholar 

  49. Rosenberger MR, Schvezov CE, Forlerer E (2005). Wear 259:590–601

    CAS  Google Scholar 

  50. Haq MIU, Anand A (2019) Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed. Silicon 11:1047–1053

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Johannesburg, South Africa to carryout research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Samuel Ratna Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.S.S.R., Mashinini, P.M. Dry Sliding Wear Behaviour of AA7075 – Al2SiO5 Layered Nanoparticle Material at Different Temperature Condition. Silicon 13, 4259–4274 (2021). https://doi.org/10.1007/s12633-020-00728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00728-3

Keywords

Navigation