Skip to main content

Advertisement

Log in

Mode-I Fracture Toughness Analysis of n-HAPs Filled Dental Restorative Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Fracture toughness of dental restoratives is of greater relevance, especially in stress relevance applications, i.e., resistance to crack propagation. This work aims to determine the mode I fracture toughness (KIC), void contents, and Vickers micro-hardness of the MPTS (3-methacryloxypropyl) trimethoxy silane) and APTES (3-aminopropyl) triethoxysilane) treated nanohydroxyapatite (n-HAPs) filled Dental Restorative Composites (DRCs). The void contents of the dental restoratives were determined by calculating theoretical and experimental densities of the material whereas, microhardness and mode I fracture toughness was determined by using the indentation and single edge notched bend (SENB) method after storing all the samples for 24 h in distilled water respectively. The result shows that void contents and microhardness of fabricated dental restoratives continue to increase with an increase in the weight fraction of fillers. And the fracture toughness (KIC) of both the series increased with the weight fraction of fillers up to a maximum value of 2.883 ± 0.19 MPa√m for (DRC-8 M) and 2.536 ± 0.18 MPa√m for DRC-8A after that KIC shows a marginal decrease in its value for 12 wt.% of fillers. The fractography of the DRCs reveals the various energy dissipating mechanism developed during crack propagation and contribute to the improved value of fracture toughness as compared to unfilled dental restoratives, i.e., crack deflection and crack pinning effect of hydroxyapatite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Mirsayar (2017) On fracture analysis of dental restorative materials under combined tensile shear loading. Theoretical and Applied Fracture Mechanics, p. doi: https://doi.org/10.1016/j.tafmec.2017.07.020

  2. M. S. Hasnain, S. A. Ahmad, N. Chaudhary, M. A. Minhaj, A. K. Nayak (2019) Degradation and failure of dental composite materials 6,, pp. https://doi.org/10.1016/B978-0-12-813742-0.00006-7.

  3. N. Ruse, "Fracture mechanics characterization of dental biomaterials.," in Dental Biomaterials. Imaging, testing, and modeling, Cambridge, UK., Woodhead Pubishing, 2008, p. 261–293

  4. Wang G, Zhang S, Bian C, Kong H (2014) Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. J Mech Behav Biomed Mater 39:119–128

    Article  CAS  Google Scholar 

  5. R. Belli, M. Wendler, A. Petschelt, T. Lube, U. Lohbauer (2018) Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. J Eur Ceram Soc, p. https://doi.org/10.1016/j.jeurceramsoc.2018.08.012

  6. Mirsayar M, Park P (2016) Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. J Mech Behav Biomed Mater 59:236–240

    Article  CAS  Google Scholar 

  7. Bajaj D, Sundaram N, Nazari A, Arola D (2006) Age, dehydration and fatigue crack growth in dentin. Biomaterials 27:2507–2517

    Article  CAS  Google Scholar 

  8. Ferracane J (1995) Current trends in dental composites. Crit Rev Oral Biol Med 6:302–318

    Article  CAS  Google Scholar 

  9. Yahyazadehfar M, Nazari A, Kruzic J, Quinn G, Arola D (2014) An inset CT specimen for evaluating fracture in small samples of material. J Mech Behav Biomed Mater 30:358–368

    Article  CAS  Google Scholar 

  10. Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U (2014) Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 30:424–432

    Article  CAS  Google Scholar 

  11. Drummond J, Lin L, Miescke K (2004) Evaluation of fracture toughness of a fiber containing dental composite after flexural fatigue. Dent Mater 20:591–599

    Article  CAS  Google Scholar 

  12. Moharamzadeh K, Hooshmand T, Keshvad A, Noort RV (2008) Fracture toughness of a ceramic–resin interface. Dent Mater 24:172–177

    Article  CAS  Google Scholar 

  13. Ilie N, Hickel R, Valceanu A, Huth K (2012) Fracture toughness of dental restorative materials. Clin Oral Investig 16:489–498

    Article  Google Scholar 

  14. R. Craig (1997) Restorative dental materials, 10. St. Louis, MO: : Mosby Publishing Co.

  15. Sakaguchi R, Cross M, Douglas W (1992) A simple model of crack propagation in dental restorations. Dent Mater 8:131–136

    Article  CAS  Google Scholar 

  16. Okulus Z, Voelkel A (2017) Mechanical properties of experimental composites with different calcium phosphates fillers. Mater Sci Eng C 78:1101–1108

    Article  CAS  Google Scholar 

  17. J. J. Kruzic, J. A, A. Carina, B. Tanaka, M. J. Hoffman, Paulo F. Cesar, Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J Mech Behav Biomed Mater, https://doi.org/10.1016/j.jmbbm.2018.08.008.

  18. Ferracane J (2013) Resin-based composite performance: are there some things we can't predict? Dent Mater 29:51–58

    Article  CAS  Google Scholar 

  19. K. Choi, J. Ferracane, H. TJ, C. D (2000) Properties of packable dental composites. J Esthet Restor Dent ,12:216–226

  20. N. Alvanforoush, R. Wong, M. Burrow, J. Palamara, Fracture toughness of Glass ionomers measured with two different methods. J Mech Behav Biomed Mater, https://doi.org/10.1016/j.jmbbm.2018.09.020.

  21. Chadda H, Satapathy BK, Patnaik A, Ray AR (2017) Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Composite Part-B 130:132–146

    Article  CAS  Google Scholar 

  22. Fani M, Farmani S, Bagheri R (2015) Fracture toughness of resin composites under different modes and media: review of articles. J Dent Biomater 2:73–82

    Google Scholar 

  23. S.Yadav, S. Gangwar, A critical evaluation of tribological interaction for restorative materials in dentistry. Int J Polym Mater Polym Biomater, p. 2018, https://doi.org/10.1080/00914037.2018.1525544.

  24. Sideridou I, Karabel M (2009) Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent Mater 25:1315–1324

    Article  CAS  Google Scholar 

  25. M. Yar, I. Rehman (2017) Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Mater Sci Eng C , p. https://doi.org/10.1016/j.msec.2017.05.10

  26. Deb S, Aiyathurai L, Roether J, Luklinska Z (2005) Development of high-viscosity, two paste bioactive bone cements. Biomaterials 26:3713–3718

    Article  CAS  Google Scholar 

  27. Harper E, Braden M, Bonfield W (2000) Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent. J Mater Sci Mater Med 11:491–497

    Article  CAS  Google Scholar 

  28. Roether JA, Deb S (2004) The effect of surface treatment of hydroxyapatite onthe properties of a bioactive bone cement. J Mater Sci Mater Med 15:413–418

    Article  CAS  Google Scholar 

  29. S. Yadav. and S. Gangwar (2019) The effectiveness of functionalized nano-hydroxyapatite filler on the physical and mechanical properties of novel dental restorative composite. Int J Polym Mater Polym Biomater, p. https://doi.org/10.1080/00914037.2019.1631822

  30. A. Aljabo, W. Xia, S. Liaqat, M. Khan, J. Knowles, P. Ashley, Y. AM, "Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites," Dent Mater, 31:1279–1289

  31. S. Beigi, H. Yeganeh, M. Atai (2013) Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites. 29:777–787

  32. Hirano H, Kadota J, Yamashita T, Agari Y (2012) Treatment of inorganic filler surface by Silane-coupling agent: investigation of treatment condition and analysis of bonding state of reacted agent. International Journal of Materials and Metallurgical Engineering 6:1–5

    Google Scholar 

  33. Fan GGY, Zhang J, Hagan JL (2012) Novel dental composites reinforced with zirconia-silica ceramic nanofibers. Dent Mater 28:360–368

    Article  Google Scholar 

  34. Patnaik A, Kumar S, Bhatt IK (2015) Analysis of polymerization shrinkage and thermo mechanical characterizations of resin-based dental composite reinforced with silane modified nanosilica filler particle. J Materials: Design and Applications 1-12

  35. M. Sudheer, R. Prabhu, R. K, T. Bhat (2014) Effect of filler content on the performance of epoxy /PTW composites. Adv Mater Sci Eng , p. https://doi.org/10.1155/2014/970468

  36. Foroutan F, Javadpour J, Khavandi MA, Rezaie H (2011) Mechanical properties of dental composite materials reinforced with micro and nano-size AL2O3 filler particles. Iran J Mater Sci Eng 2:25–33

    Google Scholar 

  37. Lassila L, Keulemans F, Säilynoja E, Vallittu PK, Garoushi S (2018) Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent Mater 34:598–606

    Article  CAS  Google Scholar 

  38. Ryan AK, Orr JF, Mitchell CA (2001) A comparative evaluation of dental luting cements by fracture toughness tests and fractography. Proc Inst Mech Eng Part H J Eng Med 215:65–74

    Article  CAS  Google Scholar 

  39. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ (2013) Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater 29:1139–1148

    Article  CAS  Google Scholar 

  40. Monfared M, Bahrololoom M (2016) Fractography and mechanical properties of urethane Dimethacrylate dental composites reinforced with glass nanoparticles. Journal of dental Biomaterials 3:327–334

    Google Scholar 

  41. Beigi S, Yeganeh H, Atai M (2013) Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites. Dent Mater 29:777–787

    Article  CAS  Google Scholar 

  42. Prasad MSS, Venkatesha CS, Jayaraju T (2015) Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions. J Miner Mater Charact Eng 10:1263–1275

    Google Scholar 

  43. Ornaghi BP, Meier MM, Rosa V, Cesar PF, Lohbauer U, Braga RR (2012) Subcritical crack growth and in vitro lifetime prediction of resin composites with different filler distributions. Dent Mater 28:985–995

    Article  CAS  Google Scholar 

  44. Souza JAD, Goutianos S, Skovgaard M, Sørensen BF (2011) Fracture resistance curves and toughening mechanisms in polymer based dental composites. J Mech Behav Biomed Mater 4:558–571

    Article  Google Scholar 

  45. Shah MB, Ferracane JL, Kruzic JJ (2009) R-curve behavior and toughening mechanisms of resin-based dental composites: effects of hydration and post-cure heat treatment. Dent Mater 25:760–770

    Article  CAS  Google Scholar 

  46. Frater M, Forster A, Kereszturia M, Braunitzer G, Nagy K (2014) In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material. J Dent 42:1143–1150

    Article  CAS  Google Scholar 

  47. Nathan A, Tah R, Balasubramanium M (2017) A. Singaravel Chidambara Nathan, et al., evaluation of fracture toughness of zirconia silica nano-fibres reinforced feldespathic ceramic. J Oral Biol Craniofac Res 8:221–224

    Google Scholar 

  48. Fan TWZZQWH (2017) The effects of different liquid medias on dental composite fatigue and mechanical properties. Materials Research Express 4:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Yadav.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Gangwar, S. Mode-I Fracture Toughness Analysis of n-HAPs Filled Dental Restorative Composites. Silicon 13, 1347–1358 (2021). https://doi.org/10.1007/s12633-020-00521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00521-2

Keywords

Navigation