Skip to main content
Log in

Dual-Metal Double-Gate with Low-k/High-k Oxide Stack Junctionless MOSFET for a Wide Range of Protein Detection: a Fully Electrostatic Based Numerical Approach

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We investigate the performance of a dielectric modulated dual-metal double-gate with low-k/high-k oxide stack junctionless MOSFET (DM-DG-LK/HK-S JL-MOSFET) based sensor device for successful detection of different protein molecules in dry environment condition, in terms of the absolute and relative change in the threshold voltage (Vth), called Vth-responsivity and Vth-sensitivity, respectively. The influence of work-function difference of the DM-gate along with the position of cavity containing biomolecules, followed by the impact of cavity dimension, on the sensing metrics, have been thoroughly inspected. Furthermore, the optimization of cavity dimension, along with proper DM-gate work-function engineering is done for the wide range of protein detection. For the sensor device, having channel length (Lch) of 1 μm, this optimum cavity dimension is found to be (400 nm × 10 nm). It is observed that, the device with Lch = 1 μm exhibits superior sensing performance when, along with the source-side cavity, the drain-side gate metal has got higher work-function than the source-side gate metal (i.e., ɸM2 > ɸM1), compared to the case when ɸM1 > ɸM2 and the cavity is located near the drain-side. Respective performance enhancements, in terms of percentage improvement of Vth-responsivity and Vth-sensitivity, are found to be 250% and 263% for the detection of Staphylococcal nuclease. Similar trend is found for the sensor devices with Lch = 50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajay NR, Saxena M, Gupta M (2016) Novel junctionless electrolyte-insulator-semiconductor field-effect transistor (JL EISFET) and its application as pH/biosensor. Microsyst Technol 23:3149–3159

    Google Scholar 

  2. Baruah RK, Paily RP (2014) A dual –material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans Electron Devices 61:123–128

    CAS  Google Scholar 

  3. Bhattacharyya A, Chanda M, De D (2019) Performance assessment of new dual-pocket vertical Heterostructure tunnel FET-based biosensor considering steric hindrance issue. IEEE Trans. Electron Dev. 66:3988–3993

    CAS  Google Scholar 

  4. Cho S, Kim KR, Park BG et al (2011) RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans Electron Dev. 58:1388–1396

    Google Scholar 

  5. Colinge JP, Lee CW, Afzalian A et al (2010) Nanowire transistors without junctions. Nat Nanotechnology 5:225–229

    CAS  Google Scholar 

  6. Colinge JP, Lee CW, Akhavan ND et al (2011) Junctionless transistors: physics and properties. In: Nazarov A, Colinge JP, Balestra F, Raskin JP, Gamiz F, Lysenko V (eds) Semiconductor-on-insulator materials for Nanoelectronics applications. Engineering Materials. Springer, Berlin, Heidelberg

    Google Scholar 

  7. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensorsfor highly sensitive and selective detection of biological and chemical species. Science. 293:1289–1292

    CAS  PubMed  Google Scholar 

  8. Doria RT, Pavanello MA, Trevisoli RD et al (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans Electron Dev 58:2511–2519

    CAS  Google Scholar 

  9. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat. Biotechnology 21:1192–1199

    CAS  Google Scholar 

  10. Duarte JP, Choi SJ, Moon DT, Choi YK (2011) Simple analytical bulk current model for long-channel double –gate junctionless transistors. IEEE Electron Device Lett. 32:704–706

    Google Scholar 

  11. Foo KL, Kashif M, Tan SJ, Hashim U (2016) An electrochemical DNA biosensor based gold-thiolate conjugation utilizing ruthenium complex [Ru(dppz)2(qtpy)]Cl2. Microsyst Technol 23:1237–1245

    Google Scholar 

  12. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt HJ, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318

    CAS  PubMed  Google Scholar 

  13. Gola D, Singh B, Singh J, Jit S, Tiwari PK (2019) Static and quasi-static drain current modeling of tri-gate Junctionless transistor with substrate Bias-induced effects. IEEE Trans. Electron Dev. 66:2876–2883

    CAS  Google Scholar 

  14. Hashemi SA, Beigi K, Jit S (2019) Modeling of fringing capacitances of ion-implanted double-gate Junctionless FETs using conformal mapping. IEEE Trans. Electron Dev. 66:4126–4133

    CAS  Google Scholar 

  15. Huang XJ, Choi YK, Im HS, Yarimaga O, Yoon E, Kim HS (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors Basel Sensors 6:756–782

    CAS  Google Scholar 

  16. Im H, Huang XJ, Gu B, Choi YK (2007) A dielectric modulated field-effect transistor for biosensing. Nat Nanotechnol 2:430–434

    CAS  PubMed  Google Scholar 

  17. Kannan N, Kumar MJ (2013) Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett 34:1575–1577

    CAS  Google Scholar 

  18. Kanungo S, Chattopadhyay S, Gupta PS, Rahaman H (2015) Comparative performance analysis of the dielectrically modulated full-gate and short-gate tunnel FET-based biosensors. IEEE Trans. Electron Dev. 62:994–1001

    Google Scholar 

  19. Kanungo S, Chattopadhyay S, Gupta PS, Sinha K, Rahaman H (2016) Study and analysis of the effects of SiGe source and pocket-Doped Channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Dev. 63:2589–2596

    CAS  Google Scholar 

  20. Kim JY, Ahn JH, Choi SJ, Im M, Kim S, Duarte JP, Kim CH, Park TJ, Lee SY, Choi YK (2012) An underlap channel-embedded field-effect transistor for biosensor application in watery and dry environment. IEEE Trans Nanotechnol 11:390–394

    Google Scholar 

  21. Larki F, Dehzang A, Islam Shabiul MD, Ali Hamid S, Abedini A, Majlis YB (2018) Effect of channel width variation on electrical characteristics of double lateral gate Junctionless transistors; a numerical study. Silicon. 10:1305–1314

    CAS  Google Scholar 

  22. Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge JP (2009) Junctionlessmultigate field-effect transistor. Appl PhysLett 94:053511

    Google Scholar 

  23. Lee CW, Borne A, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices. 57:620–625

    CAS  Google Scholar 

  24. Lou H, Zhang L, Zhu Y et al (2012) A junctionless nanowire transistor with a dual-material gate. IEEE trans. Electron Devices 59:1829–1836

    CAS  Google Scholar 

  25. Maissel LI, Glang R (1970) Handbook of thin film technology. McGraw-Hill, 1st edition

  26. Moon D, Han JW, Meyyappan M (2016) Comparative study of field effect transistor based biosensors. IEEE Transactions on Nanotech 15:956–961

    CAS  Google Scholar 

  27. Nguyen VT, Kwon YS, Gu MB (2017) Aptamer-based environmental biosensors for small molecule contaminants. Current Opinion Biotechnol 45:15–23

    CAS  Google Scholar 

  28. Oh SW, Moon JD, Lim HJ, Park SY, Kim T, Park JB, Han MH, Snyder M, Choi EY (2005) Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J 19:1355–1337

    Google Scholar 

  29. Rajapaksha RDAA, Hashim U, AfnanUda MN, Fernando CAN, DeSilva SNT (2017) Target ssDNA detection of E.coli O157:H7 through electrical based DNA biosensor. Microsyst Technol 23:5771–5780

    CAS  Google Scholar 

  30. Ribaut C, Loyez M, Larrieu JC, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C (2017) Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis. Biosensors Bioelectron 92:449–456

    CAS  Google Scholar 

  31. Rios R, Cappellani A, Armstrong M et al (2011) Comparison of junctionless and conventional trigate transistors with down to 26 nm. IEEE Electron Device Lett. 32:1170–1172

    Google Scholar 

  32. Sachtler WMH, Dorgelo GJH, Holscher AA (1966) The work function of gold. Surf Sci 5:221–229

    CAS  Google Scholar 

  33. Sheikhshoaie M, Karimi-Maleh H, Sheikhshoaie I, Ranjbar M (2017) Voltammetric amplified sensor employing RuO2nano-road and room temperature ionic liquid for amaranth analysis in food samples. J Mol Liq 229:489–494

    CAS  Google Scholar 

  34. Shin J, Choi S, Yang JS, Song J, Choi JS, Jung HI (2017) Smart forensic phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens. Actuators B. Chem. 243:221–225

    CAS  Google Scholar 

  35. Simonson T, Brooks CL (1996) Charge screening and the dielectric constant of proteins: insight from molecular dynamics. J Am Chem Soc 118:8452–8458

    CAS  Google Scholar 

  36. Singh S, Raman A (2018) Gate-all-around charge plasma-based dual material gate-stack nanowire FET for enhanced analog performance. IEEE Trans Electron Dev 65:3026–3032

    CAS  Google Scholar 

  37. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2016) Analytical modeling of channel potential and threshold voltage of double-gate Junctionless FETs with a vertical Gaussian-like doping profile. IEEE Trans. Electron Dev. 63:2299–2305

    CAS  Google Scholar 

  38. Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S (2017) 2-D analytical threshold voltage model for dielectric pocket double-gate Junctionless FETs by considering source/drain depletion effect. IEEE Trans. Electron Dev. 64:901–908

    CAS  Google Scholar 

  39. Swain SK, Dutta A, Adak S, Sarkar CK (2016) Influence of channel length and high-K oxide thickness on subthreshold analog/RF performance of graded channel and gate stack DG-MOSFETs. Microelectron Reliab 61:24–29

    CAS  Google Scholar 

  40. Tiwari PK, Dubey S, Singh M, Jit S (2010) A two-dimensional analytical model for threshold voltage of short-channel triple-material double gate (TM-DG) MOSFETs. J Appl Phys 108(074508):1–8

    Google Scholar 

  41. Tiwari PK, Dubey S, Singh K, Jit S (2012) Analytical modeling of subthreshold current and subthreshold swing of short-channel triple-material double-gate (TM-DG) MOSFETs. Superlattice Microst 51:715–724

    CAS  Google Scholar 

  42. Verma M, Tirkey S, Yadav S, Sharma D, Yadav DS (2017) Performance assessment of a novel vertical dielectrically modulated TFET based biosensor. IEEE Trans. Electron Dev. 64:3841–3848

    CAS  Google Scholar 

  43. Wang Y, Shan C, Dou Z, Wang L, Cao F (2015) Improved performance of nanoscale junctionless transistor based on gate engineering approach. Microelectron Reliab 55:318–325

    CAS  Google Scholar 

  44. Yang YT, Callegari C, Feng XL, Roukes ML (2003) Zeptogram- scale nanomechanical mass sensing. Nanotechnology Letters 6:583–586

    Google Scholar 

  45. Yeh MS, Wu YC, Wu MH, Chung MH, Jhan YR, Hung MF (2015) Characterizing the electrical properties of a novel junctionless poly-Si ultrathin-body field-effect transistor using a trench structure. IEEE Electron Device Lett. 36:150–152

    Google Scholar 

Download references

Acknowledgement

We would like to thank our M.Tech. student Biswajit Khan, for helping us in generating some relevant data at later stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avik Chattopadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Tewari, S. & Gupta, P.S. Dual-Metal Double-Gate with Low-k/High-k Oxide Stack Junctionless MOSFET for a Wide Range of Protein Detection: a Fully Electrostatic Based Numerical Approach. Silicon 13, 441–450 (2021). https://doi.org/10.1007/s12633-020-00430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00430-4

Keywords

Navigation