Skip to main content
Log in

Stereometric Analysis of Effects of Heat Stressing on Micromorphology of Si Single Crystals

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The purpose of this work is study of silicon single crystal wafer thermal stability in correlation with three-dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were heated up to 500 °C for the period of 2 and 4 h. Then the surfaces of wafers were processed by ion beam. The difference in surface structure of processed and reference samples was investigated. Structural and compositional studies are provided by X-ray photoelectron spectroscopy. Stereometric analysis was carried out on the basis of AFM-data, for stressed and unstressed samples. The results of stereometric analysis show the correlation of statistical characteristics of surface topography and structure of surface and near-surface area. Characterization techniques in combination with data processing methodology are essential for description of the surface condition. All the extracted topographic parameters and texture features have demonstrated a deeper analysis that can be used for new micro-topography models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sengupta A, Sarkar CK (eds) (2015) Introduction to Nano: Basics to Nanoscience and Nanotechnology. Springer. https://doi.org/10.1007/978-3-662-47314-6

    Google Scholar 

  2. Ţălu Ş (2015) Micro and nanoscale characterization of three dimensional surfaces. Basics and applications, Napoca Star Publishing House, Cluj-Napoca

    Google Scholar 

  3. Šesták J, Simon P (2012) Thermal analysis of micro, Nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Springer Science & Business Media. https://doi.org/10.1007/978-90-481-3150-1.

    Google Scholar 

  4. Méndez A, Reyes Y, Trejo G, Stępień K, Ţălu Ş (2015) Micromorphological characterization of zinc/silver particle composite coatings. Microsc Res Tech 78:1082–1089. https://doi.org/10.1002/jemt.22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdulagatov AI, Ramazanov SM, Dallaev RS, Murliev EK, Palchaev DK, Rabadanov MK, Abdulagatov IM (2018) Atomic layer deposition of aluminum nitride using Tris(diethylamido)aluminum and hydrazine or ammonia. Russ Microelectron 47(2):118–130. https://doi.org/10.1134/S1063739718020026

    Article  CAS  Google Scholar 

  6. Mazzocchi, V., Sennikov, P. G., Bulanov, A. D., Churbanov, M. F., Bertrand, B., Hutin, L., … Sanquer, M. 99.992% 28Si CVD-grown epilayer on 300 mm substrates for large scale integration of silicon spin qubits. J Cryst Growth (2018). https://doi.org/10.1007/s00125-017-4462-5

    Article  Google Scholar 

  7. Sun X, Gao K, Pang X, Sun Q, Li J (2018) Thermodynamic energy variation diagram to speculate preferred growth orientation of magnetron sputtered PbSe thin films on monocrystalline silicon substrates. Appl Surf Sci 452:1–10. https://doi.org/10.1016/j.apsusc.2018.04.200

    Article  CAS  Google Scholar 

  8. Gotoh K, Cui M, Takahashi I, Kurokawa Y, Usami N (2017) Development of spin-coated copper iodide on silicon for use in hole-selective contacts. Energy Procedia 124:598–603. https://doi.org/10.1016/j.egypro.2017.09.081

    Article  CAS  Google Scholar 

  9. Alford, T. L., Tang, T., Thompson, D. C., Bhagat, S., & Mayer, J. W. Influence of microwave annealing on direct bonded silicon wafers. Thin Solid Films (2008). https://doi.org/10.1016/j.tsf.2007.06.118

    Article  CAS  Google Scholar 

  10. Fung, T. H., Chan, C. E., Hallam, B. J., Payne, D. N. R., Abbott, M. D., & Wenham, S. R. (2017). Impact of annealing on the formation and mitigation of carrier-induced defects in multi-crystalline silicon. In Energy Procedia https://doi.org/10.1016/j.egypro.2017.09.087

    Article  CAS  Google Scholar 

  11. Amanov A, Kwon HG, Pyun YS (2017) The possibility of reducing the reflectance and improving the tribological behavior of Si wafer by UNSM technique. Tribol Int 105:175–184. https://doi.org/10.1016/j.triboint.2016.09.042

    Article  CAS  Google Scholar 

  12. Shikhgasan R, Ţălu Ş, Dinara S, Sebastian S, Guseyn R (2015) Epitaxy of silicon carbide on silicon: micromorphological analysis of growth surface evolution. Superlattice Microst 86:395–402. https://doi.org/10.1016/j.spmi.2015.08.007.

    Article  CAS  Google Scholar 

  13. N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Ţălu, M. Pourreza, S. Ghasemi, Microstructure, morphology and electrochemical properties of co nanoflake water oxidation electrocatalyst at micro- and nanoscale. RSC Adv, 7(21) (2017) 12923–12930. https://doi.org/10.1039/C6RA28795F.

    Article  CAS  Google Scholar 

  14. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A, Ahmadirad M (2016) Gold nanoparticles embedded in carbon film: micromorphology analysis. J Ind Eng Chem 35:158–166. https://doi.org/10.1016/j.jiec.2015.12.029

    Article  CAS  Google Scholar 

  15. Dallaeva D, Ţălu Ş, Stach S, Škarvada P, Tomanek P, Grmela L (2014) AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl Surf Sci 312:81–86. https://doi.org/10.1016/j.apsusc.2014.05.086

    Article  CAS  Google Scholar 

  16. S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminum nitride epilayers prepared by magnetron sputtering, Mater Sci Pol 33(1) (2015) 175–184. https://doi.org/10.1515/msp-2015-0036.

    Article  CAS  Google Scholar 

  17. Rachow T, Reber S, Janz S, Knapp M, Milenkovic N (2016) Degradation of silicon wafers at high temperatures for epitaxial deposition. Energy Science and Engineering 4(5):344–351. https://doi.org/10.1002/ese3.130

    Article  CAS  Google Scholar 

  18. Rabus, M., Fiory, A. T., Ravindra, N. M., Frisella, P., Agarwal, A., Sorsch, T., … Mansfield, W. (2006). Rapid thermal processing of silicon wafers with emissivity patterns. J Electron Mater, 35(5), 877–891. https://doi.org/10.1007/BF02692543

    Article  CAS  Google Scholar 

  19. Yoo WS, Fukada T, Yokoyama I, Kang K, Takahashi N (2002) Thermal behavior of large-diameter silicon wafers during high-temperature rapid thermal processing in single wafer furnace. Japanese journal of applied physics. Part 1: Regular Papers and Short Notes and Review Papers 41(7 A):4442–4449. https://doi.org/10.1143/JJAP.41.4442

    Article  CAS  Google Scholar 

  20. Doi T, Koguchi M (2016) Investigation of Si(001) stable surfaces in alternating current heating. Surf Sci 653:226–236. https://doi.org/10.1016/j.susc.2016.06.015

    Article  CAS  Google Scholar 

  21. Gupta P, Kulkarni MS (2006) Simulation of slip during high-temperature annealing of silicon wafers in vertical furnaces. ECS Trans 3(October):211–223. https://doi.org/10.1149/1.2355758

    Article  CAS  Google Scholar 

  22. Shiraki, H., Profiler, P., Kanda, T., Hourai, M., Tomokage, H., Spectroscopy, P., … Suzuki, T. (1974). Related content silicon wafer annealing effect in loop defect generation.

  23. Suzuki, T. Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J Appl Phys (2000). https://doi.org/10.1063/1.1323512

    Article  CAS  Google Scholar 

  24. Gräf D, Lambert U, Brohl M, Ehlert A, Wahlich R, Wagner P (1995) Improvement of Czochralski silicon wafers by high-temperature annealing. J Electrochem Soc 142(9):3189–3192. https://doi.org/10.1149/1.2048711

    Article  Google Scholar 

  25. Elenkova D, Zaharieva J, Getsova M, Manolov I, Milanova M, Stach S, Ţălu Ş (2015) Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a Biscoumarin derivative. Int J Polym Anal Charact 20(1):42–56. https://doi.org/10.1080/1023666X.2014.955400

    Article  CAS  Google Scholar 

  26. Ţălu Ş, Stach S, Mahajan A, Pathak D, Wagner T, Kumar A, Bedi RK (2014) Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surf Interface Anal 46(6):393–398. https://doi.org/10.1002/sia.5492

    Article  CAS  Google Scholar 

  27. A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, Micromorphology characterization of copper thin films by AFM and fractal analysis, J Mater Sci Mater Electron 26 (2015) 9630–9639. https://doi.org/10.1007/s10854-015-3628-5.

    CAS  Google Scholar 

  28. Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Surface morphology of titanium nitride thin films synthesised by DC reactive magnetron sputtering. Mater. Sci.- Poland, 33 (2015), 137–143. https://doi.org/10.1515/msp-2015-0010

    Article  Google Scholar 

  29. Knápek A, Sobola D, Tománek P, Pokorná Z, Urbánek M (2017) Field emission from the surface of highly ordered pyrolytic graphite. Appl Surf Sci 395. https://doi.org/10.1016/j.apsusc.2016.05.002

    Article  Google Scholar 

  30. Ţălu Ş, Stach S, Zaharieva J, Milanova M, Todorovsky D, Giovanzana S (2014) Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) -Diketonates by fractal analysis. Int J Polym Anal Charact 19:404–421. https://doi.org/10.1080/1023666X.2014.904149

    Article  CAS  Google Scholar 

  31. Y. Reyes-Vidal, R. Suarez-Rojas, C. Ruiz, J. Torres, Ş. Ţălu, A. Méndez, G. Trejo, Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings. Appl Surf Sci 342 (2015), 34–41. https://doi.org/10.1016/j.apsusc.2015.03.037.

    Article  CAS  Google Scholar 

  32. Sobola D, Ţălu Ş, Solaymani S, Grmela L (2017) Influence of scanning rate on quality of AFM image: study of surface statistical metrics. Microsc Res Tech 80:1328–1336. https://doi.org/10.1002/jemt.22945.

    Article  PubMed  Google Scholar 

  33. Ţălu Ş, Solaymani S, Bramowicz M, Kulesza S, Ghaderi A, Shahpouri S, Elahi SM (2016) Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J Mater Sci Mater Electron 27:9272–9277. https://doi.org/10.1007/s10854-016-4965-8

    Google Scholar 

  34. Yadav RP, Kumar M, Mittal AK, Pandey AC (2015) Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces. Chaos 25(8) 083115

    Article  CAS  Google Scholar 

  35. Ţălu Ş, Bramowicz M, Kulesza S, Ghaderi A, Dalouji V, Solaymani S, Fathi Kenari M, Ghoranneviss M (2016) Fractal features and surface micromorphology of diamond nanocrystals. J Microsc 264:143–152. https://doi.org/10.1111/jmi.12422

    Article  CAS  PubMed  Google Scholar 

  36. Stach S, Sapota W, Ţălu Ş, Ahmadpourian A, Luna C, Ghobadi N, Arman A, Ganji M (2017) 3D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci Mater Electron 28(2):2113–2122. https://doi.org/10.1007/s10854-016-5774-9

    Article  CAS  Google Scholar 

  37. Ţălu Ş, Stach S, Mendez A, Trejo G, Talu M (2013) Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J Electrochem Soc 161:D44–D47. https://doi.org/10.1149/2.039401jes

    Article  CAS  Google Scholar 

  38. Ţălu Ş, Yadav RP, Šik O, Sobola D, Dallaev R, Solaymani S, Man O (2018) How topographical surface parameters are correlated with CdTe monocrystal surface oxidation. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2018.05.030

    Article  Google Scholar 

  39. Connor MW, Colmenares C (1996) X-ray photoelectron characterization of SiO2 aerogel. J Non-Cryst Solids 201:76–80. https://doi.org/10.1016/0022-3093(95)00622-2

    Article  CAS  Google Scholar 

  40. Suzuki T (2000) Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J Appl Phys 88:6881. https://doi.org/10.1063/1.1323512

    Article  CAS  Google Scholar 

  41. Bekkay T, Piyakis K, Diawara Y, Sacher E, Yelon A, Currie JF (1991) Band bending and Fermi level shifts in phosphorus-doped hydrogenated amorphous silicon studied by X-ray photoelectron spectroscopy. Surf Sci 258:190–196. https://doi.org/10.1016/0039-6028(91)90913-D

    Article  CAS  Google Scholar 

  42. Motamedi P, Cadien K (2014) XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl Surf Sci 315:104–109. https://doi.org/10.1016/j.apsusc.2014.07.105

    Article  CAS  Google Scholar 

  43. Mountains Map® 7 Software (Digital Surf, Besançon, France). Available from: http://www.digitalsurf.fr (last Accessed September 10th, 2018).

  44. ISO 25178-2: 2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters Available from: http://www.iso.org (last Accessed September 10th, 2018).

Download references

Acknowledgements

Research described in the paper was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), by the National Sustainability Program under grant LO1401 and by Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626. For the research, infrastructure of the SIX Center was used. Part of the work was carried out with the support of CEITEC Nano Research Infrastructure (ID LM2015041, MEYS CR, 2016–2019), CEITEC Brno University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallaev Rashid.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, D., Stach, S., Ţălu, Ş. et al. Stereometric Analysis of Effects of Heat Stressing on Micromorphology of Si Single Crystals. Silicon 11, 2945–2959 (2019). https://doi.org/10.1007/s12633-019-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-0085-4

Keywords

Navigation