Skip to main content
Log in

Gamma Rays Interactions with Transition Metal Doped-Soda lime Phosphate Glasses Evaluated by Collective Optical, FTIR Spectral Measurements

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

MnO2, NiO, CoO and CuO doped in soda lime phosphate host glass were prepared. Combined optical and FTIR spectra were measured for the studied glasses before and after gamma irradiation. Some optical and physical properties such as density, molar volume, optical band gap energy and the width of the band tails (Urbach energy) were measured or calculated for the glass samples before and after irradiation. Optical absorption spectra of the selected TM ions reveal specific absorption bands which are characteristics for each ion in accordance with its configuration, valence or coordination state exhibited by the TM ion in the host phosphate glass. Gamma irradiation causes obvious changes which vary with the type of transition metal ion and in some cases obvious shielding effects are identified towards gamma irradiation. FTIR spectra show vibrational bands which are correlated with specific phosphate groups (mainly Q2 and Q3 units) which are related to the percent of constituting glass-forming component oxide. The measured optical properties confirmed the results of the optical absorption spectroscopy which indicate that copper-doped samples have some shielding behavior towards the irradiation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin SW (1991) Review of the structures of phosphate glasses. Eur J Solid State Inorganic Chem 28:163–205. https://doi.org/10.1002/chin.199117287

    CAS  Google Scholar 

  2. Guo G (1998) Optical and thermal properties of some chemically durable lead phosphate glasses. Glass Technol 39:138–141

    CAS  Google Scholar 

  3. Möncke D, Ehrt D (2007) Photoionization of polyvalent ions. In: Glick H P (ed) Materials science research horizons. Nova Science Publishers, Inc., New York, pp 1–56

  4. Ehrt D (2015) REVIEW: Phosphate and fluoride phosphate optical glasses — properties, structure and applications. Phys Chem Glasses: Eur J Glass Sci Technol Part B 56:217–234. https://doi.org/10.13036/17533562.56.6.217

    Google Scholar 

  5. Karabulut M, Marasinghe GK, Ray CS et al (2002) An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J Non-Crystall Solids 306:182–192. https://doi.org/10.1016/S0022-3093(02)01053-0

    Article  CAS  Google Scholar 

  6. Wilder Jr JA (1980) Glasses and glass ceramics for sealing to aluminum alloys. J Non-Crystall Solids 38–39:Par:879–884. https://doi.org/10.1016/0022-3093(80)90548-7

    Article  Google Scholar 

  7. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  CAS  Google Scholar 

  8. Bamford CR (1977) Colour generation and control in glass, glass science and technology volume 2. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  9. Elliott SR (1984) Physics of amorphous materials. Longman, London

    Google Scholar 

  10. Paul A (1990) Chemistry of glasses. Chapman and Hall, London

    Google Scholar 

  11. Bishay A (1970) Radiation induced color centers in multicomponent glasses. J Non-Crystall Solids 3:54–114. https://doi.org/10.1016/0022-3093(70)90106-7

    Article  Google Scholar 

  12. Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, pp 205– 262

  13. ElBatal HA, Ghoneim NA (1997) Absorption spectra of gamma-irradiated sodium phosphate glasses containing vanadium. Nuclear Instrum Methods Phys Res Section B: Beam Interact Mater Atoms 124:81–90. https://doi.org/10.1016/S0168-583X(96)00830-0

    Article  CAS  Google Scholar 

  14. El-Batal FH (2008) Gamma ray interaction with copper-doped sodium phosphate glasses. J Mater Sci 43:1070–1079. https://doi.org/10.1007/s10853-007-2254-x

    Article  CAS  Google Scholar 

  15. ElBatal FH, Marzouk MA, Abdel ghany AM (2011) Gamma rays interaction with bismuth borate glasses doped by transition metal ions. J Mater Sci 46:5140–5152. https://doi.org/10.1007/s10853-011-5445-4

    Article  CAS  Google Scholar 

  16. Marzouk MA, ElBatal FH, Eisa WH, Ghoneim NA (2014) Comparative spectral and shielding studies of binary borate glasses with the heavy metal oxides SrO, CdO, BaO, PbO or Bi2O3 before and after gamma irradiation. J Non-Crystall Solids 387:155–160. https://doi.org/10.1016/j.jnoncrysol.2014.01.002

    Article  CAS  Google Scholar 

  17. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosoph Mag 22:0903–0922. https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  18. Tauc J (1974) Amorphous and liquid semiconductor. Plenum Press, New York

    Book  Google Scholar 

  19. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324–1324. https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  20. Sigel Jr. GH, Ginther RJ (1968) The effect of iron on the ultraviolet absorption of high purity soda-silica glass. Glass Technol 9:66–69

    Google Scholar 

  21. Sigel Jr GH (1977) Optical absorption of glasses. In: Tomozawa J M, Doremus R H (eds) Treatise on materials science & technology. Academic Press, New York, pp 5–89

  22. Duffy JA (1997) Charge transfer spectra of metal ions in glass. Phys Chem Glasses 38:289–292

    CAS  Google Scholar 

  23. Ehrt D, Ebeling P, Natura U (2000) UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses. J Non-Crystall Solids 263–264:240–250. https://doi.org/10.1016/S0022-3093(99)00681-X

    Article  Google Scholar 

  24. Möncke D, Ehrt D (2004) Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants. Opt Mater 25:425–437. https://doi.org/10.1016/j.optmat.2003.11.001

    Article  CAS  Google Scholar 

  25. Möncke D (2015) Photo-ionization of 3d-ions in fluoride-phosphate glasses. Int J Appl Glass Sci 6:249–267. https://doi.org/10.1111/ijag.12135

    Article  CAS  Google Scholar 

  26. ElBatal FH, Marzouk MA, Abdelghany AM (2011) UV–visible and infrared absorption spectra of gamma irradiated V2O5-doped in sodium phosphate, lead phosphate, zinc phosphate glasses: A comparative study. J Non-Crystall Solids 357:1027–1036. https://doi.org/10.1016/j.jnoncrysol.2010.11.040

    Article  CAS  Google Scholar 

  27. Marzouk MA, Hamdy YM, Elbatal HA, Ezz Eldin F M (2015) Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation. J Luminescence 166:295–303. https://doi.org/10.1016/j.jlumin.2015.05.054

    Article  CAS  Google Scholar 

  28. Abdelghany AM, ElBatal HA, EzzElDin FM (2017) Gamma ray interaction with vanadyl ions in barium metaphosphate glasses; spectroscopic and ESR studies. J Molecular Struc 1147:33–39. https://doi.org/10.1016/j.molstruc.2017.06.076

    Article  CAS  Google Scholar 

  29. Ardelean I, Peteanu M, Todor I (2002) EPR and magnetic susceptibility investigation of MnO-Bi2O3 glasses. Phys Chem Glasses 43:276–279

    CAS  Google Scholar 

  30. Sreekanth Chakradhar RP, Sivaramaiah G, Rao JL, Gopal NO (2005) EPR and optical investigations of manganese ions in alkali lead tetraborate glasses. Spectrochimica Acta Part A: Molecular Biomolecular Spectros 62:761–768. https://doi.org/10.1016/j.saa.2005.02.045

    Article  CAS  Google Scholar 

  31. Mohan NK, Reddy MR, Jayasankar CK, Veeraiah N (2008) Spectroscopic and dielectric studies on MnO doped PbO-Nb2O5-P2O5 glass system. J Alloys Compd 458:66–76. https://doi.org/10.1016/j.jallcom.2007.04.143

    Article  CAS  Google Scholar 

  32. Elbatal FH, Ouis MA, Morsi RM, Marzouk SY (2010) Interactions of gamma rays with undoped and Mn-doped sodium phosphate glasses. Philosoph Mag 90:2905–2924. https://doi.org/10.1080/14786431003745286

    Article  CAS  Google Scholar 

  33. Moustaffa FA, Ghoneim NA, Zahran AH, Ezz El, Din FM (1983) Effect of gamma-rays on some mixed alkali borate glasses containing nickel. J Non-Crystall Solids 55:353–361. https://doi.org/10.1016/0022-3093(83)90041-8

    Article  CAS  Google Scholar 

  34. Möncke D, Natura U, Ehrt D (1999) Radiation defects in C oO and NiO doped glasses of different structure. In: Proceedings of the 5th ESG conference. Czech Glass Society, Prague, pp B4-49–B4-56

  35. ElBatal FH, Morsi RM, Ouis MA, Marzouk SY (2010) UV–visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses. Spectrochimica Acta Part A: Molecular Biomolecular Spectros 77:717–726. https://doi.org/10.1016/j.saa.2010.06.039

    Article  CAS  Google Scholar 

  36. ElBatal HA, ElMandouh ZE, Zayed HA, et al. (2013) Gamma rays interaction with copper doped lithium phosphate glasses. J Molecular Struct:1054–1055:57–64. https://doi.org/10.1016/j.molstruc.2013.09.022

  37. Tomlinson AAG, Hathaway BJ, Billing DE, Nichols P (1969) The electronic properties and stereochemistry of the copper(II) ion. Part V. The tetra-ammine complexes. J Chem Soc A: Inorganic Phys Theor:65. https://doi.org/10.1039/j19690000065

  38. Varshneya AK (1994) Fundamentals of inorganic glasses. Academic Press, Inc., USA

    Google Scholar 

  39. Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Crystall Solids 240:144–153. https://doi.org/10.1016/S0022-3093(98)00711-X

    Article  CAS  Google Scholar 

  40. Doweidar H, Moustafa YM, El-Egili K, Abbas I (2005) Infrared spectra of Fe2O3–PbO–P2O5 glasses. Vib Spectros 37:91–96. https://doi.org/10.1016/j.vibspec.2004.07.002

    Article  CAS  Google Scholar 

  41. Shaim A, Et-tabirou M, Montagne L, Palavit G (2002) Role of bismuth and titanium in Na2O–Bi2O3–TiO2–P2O5 glasses and a model of structural units. Mater Res Bullet 37:2459–2466. https://doi.org/10.1016/S0025-5408(02)00929-7

    Article  CAS  Google Scholar 

  42. Efimov AM (1999) Vibrational spectra, related properties, and structure of inorganic glasses. J Non-Crystall Solids 253:95–118. https://doi.org/10.1016/S0022-3093(99)00409-3

    Article  CAS  Google Scholar 

  43. Abid M, Elmoudane M, Et-tabirou M (2002) Spectroscopic studies of the structure of sodium lead oligophosphate glasses. Phys Chem Glasses 43:267–270

    CAS  Google Scholar 

  44. Shelby JE (1980) Effect of radiation on the physical properties of borosilicate glasses. J Appl Phys 51:2561–2565. https://doi.org/10.1063/1.327980

    Article  CAS  Google Scholar 

  45. Prado MO, Messi NB, Plivelic TS et al (2001) The effects of radiation on the density of an aluminoborosilicate glass. J Non-Crystall Solids 289:175–184. https://doi.org/10.1016/S0022-3093(01)00707-4

    Article  CAS  Google Scholar 

  46. Sharma G, Thind KS, et al. (2006) Manupriya Effects of gamma-ray irradiation on optical properties of ZnO–PbO–B2O3 glasses. Nuclear Instrum Methods Phys Res Sec B: Beam Interact Mater Atoms 243:345–348. https://doi.org/10.1016/j.nimb.2005.08.157

    Article  CAS  Google Scholar 

  47. Sharma G, Singh K, et al. (2006) Manupriya Effects of gamma irradiation on optical and structural properties of PbO–Bi2O3–B2O3 glasses. Rad Phys Chem 75:959–966. https://doi.org/10.1016/j.radphyschem.2006.02.008

    Article  CAS  Google Scholar 

  48. Al-Ewaisi MA, Imran MMA, Lafi OA, Kloub MW (2010) Effect of gamma irradiation on some electrical properties and optical band gap of bulk Se92Sn8 chalcogenide glass. Physica B: Cond Matter 405:2643–2647. https://doi.org/10.1016/j.physb.2010.03.045

    Article  CAS  Google Scholar 

  49. Dow JD, Redfield D (1972) Toward a unified theory of Urbach’s rule and exponential absorption edges. Phys Rev B 5:594–610. https://doi.org/10.1103/PhysRevB.5.594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Hamdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, Y.M., ElBatal, F.H., Ezz-Eldin, F.M. et al. Gamma Rays Interactions with Transition Metal Doped-Soda lime Phosphate Glasses Evaluated by Collective Optical, FTIR Spectral Measurements. Silicon 11, 673–684 (2019). https://doi.org/10.1007/s12633-018-9949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9949-2

Keywords

Navigation